NJC
peroxidase mimetic and its application in biosensing,
Paper
mimics, Chem. Commun., 1997, 2277–2278; (b) Y. F. Huan,
Q. Fei, H. Y. Shan, B. J. Wang, H. Xu and G. D. Feng, A novel
water-soluble sulfonated porphyrin fluorescence sensor for
sensitive assays of H2O2 and glucose, Analyst, 2015, 140,
1655–1661.
Chem. Commun., 2013, 49, 5013–5015; (b) Y. Lu, W. C. Ye,
Q. Yang, J. Yu, Q. Wang, P. P. Zhou, C. M. Wang, D. S. Xue
and S. Q. Zhao, Three-dimensional hierarchical porous
PtCu dendrites: A highly efficient peroxidase nanozyme for
colorimetric detection of H2O2, Sens. Actuators, B, 2016, 230, 43 (a) M. J. Lv, T. Mei, C. A. Zhang and X. B. Wang, Selective
721–730.
and sensitive electrochemical detection of dopamine based
on water-soluble porphyrin functionalized graphene nano-
composites, RSC Adv., 2014, 4, 9261–9270; (b) M. S. Zhu,
Z. Li, B. Xiao, Y. T. Lu, Y. K. Du, P. Yang and X. M. Wang,
Surfactant assistance in improvement of photocatalytic
hydrogen production with the porphyrin noncovalently
functionalized graphene nanocomposite, ACS Appl. Mater.
Interfaces, 2013, 5, 1732–1740.
30 Y. N. Ding, B. C. Yang, H. Liu, Z. Liu, X. Zhang, X. W. Zheng
and Q. Y. Liu, FePt-Au ternary metallic nanoparticles
with the enhanced peroxidase-like activity for ultrafast
colorimetric detection of H2O2, Sens. Actuators, B, 2018,
259, 775–783.
31 S. J. Liu, J. W. Fu, M. H. Wang, Y. Yan, Q. Q. Xin, L. Cai and
Q. Xu, Magnetically separable and recyclable Fe3O4-
polydopamine hybrid hollow microsphere for highly effi- 44 W. W. Tu, J. P. Lei, P. Wang and H. X. Ju, Photoelectro-
cient peroxidase mimetic catalysts, J. Colloid Interface Sci.,
2016, 469, 69–77.
chemistry of free-base-porphyrin-functionalized zinc oxide
nanoparticles and their applications in biosensing, Chem. –
Eur. J., 2011, 17, 9440–9447.
32 M. M. Chen, L. F. Sun, Y. N. Ding, Z. Q. Shi and Q. Y. Liu,
N,N0-Di-carboxymethyl perylene diimide functionalized 45 (a) Q. Y. Liu, Y. T. Yang, H. Li, R. R. Zhu, Q. Shao, S. G. Yang
magnetic nanocomposites with enhanced peroxidase-like
activity for colorimetric sensing of H2O2 and glucose, New
J. Chem., 2017, 41, 5853–5862.
and J. J. Xu, NiO nanoparticles modified with 5, 10, 15,
20-tetrakis(4-carboxylpheyl)-porphyrin: promising per-
oxidase mimetics for H2O2 and glucose detection, Biosens.
Bioelectron., 2015, 64, 147–153; (b) Q. Y. Liu, H. Li,
Q. R. Zhao, R. R. Zhu, Y. Y. Yang, Q. Y. Jia, B. Bian and
L. H. Zhuo, Glucose-sensitive colorimetric sensor based
on peroxidase mimics activity of porphyrin-Fe3O4 nano-
composites, Mater. Sci. Eng., C, 2014, 41, 142–151;
(c) Q. Y. Liu, Y. T. Yang, X. T. Lv, Y. Y. Ding, Y. Zhang,
J. J. Jing and C. Xu, One-step synthesis of uniform nano-
particles of porphyrin functionalized ceria with promising
peroxidase mimetics for H2O2 and glucose colorimetric
detection, Sens. Actuators, B, 2017, 240, 726–734.
33 H. Song, L. P. Zhu, Y. G. Li, Z. R. Lou, M. Xiao and Z. Z. Ye,
Preparation of ZnFe2O4 nanostructures and highly efficient
visible-light-driven hydrogen generation with the assistance of
nanoheterostructures, J. Mater. Chem. A, 2015, 3, 8353–8360.
34 A. Sutka, J. Zavickis, G. Mezinskis, D. Jakovlevs and J. Barloti,
Ethanol monitoring by ZnFe2O4 thin film obtained by spray
pyrolysis, Sens. Actuators, B, 2013, 176, 330–334.
35 J. Q. Wan, X. H. Jiang, H. Li and K. Z. Chen, Facile synthesis
of zinc ferrite nanoparticles as non-lanthanide T1 MRI
contrast agents, J. Mater. Chem., 2012, 22, 13500–13505.
36 L. Su, J. Feng, X. M. Zhou, C. L. Ren, H. H. Li and X. G. Chen, 46 (a) Q. Y. Liu, P. P. Chen, Z. Xu, M. M. Chen, Y. N. Ding,
Colorimetric detection of urine glucose based ZnFe2O4
magnetic nanoparticles, Anal. Chem., 2012, 2012, 5753–5758.
37 R. A. W. Johnstone, A. J. Simpson and P. A. Stocks, Hetero-
bimetallic cycloheptatrienyl and cycloheptatrienylidene
complexes, Chem. Commun., 1997, 2277–2278.
38 X. H. Wang, K. G. Qu, B. L. Xu, J. S. Ren and X. G. Qu,
Multicolor luminescent carbon nanoparticles: synthesis,
supramolecular assembly with porphyrin, intrinsic peroxidase-
like catalytic activity and applications, Nano Res., 2011, 4,
908–920.
K. Yue and J. Xu, A facile strategy to prepare porphyrin
functionalized ZnS nanoparticles and their peroxidase-like
catalytic activity for colorimetric sensor of hydrogen per-
oxide and glucose, Sens. Actuators, B, 2017, 251, 339–348;
(b) Q. Y. Liu, Q. Y. Jia, R. R. Zhu, Q. Shao, D. M. Wang,
P. Cui and J. C. Ge, 5,10,15,20-Tetrakis(4-carboxyl phenyl)-
porphyrin-CdS nanocomposites with intrinsic peroxidase-
like activity for glucose colorimetric detection, Mater. Sci.
Eng., C, 2014, 42, 177–184.
47 A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher,
J. Assour and L. Korsakoff, A simplified synthesis for meso-
tetraphenylporphin, J. Org. Chem., 1967, 32, 476.
39 R. X. Wang, J. J. Fan, Y. J. Fan, J. P. Zhong, L. Wang,
S. G. Sun and X. C. Shen, Platinum nanoparticles on
porphyrin functionalized graphene nanosheets as a super- 48 Y. L. Guo, X. Y. Liu, X. D. Wang, A. Lqbal, C. D. Yang,
ior catalyst for methanol electrooxidation, Nanoscale, 2014,
6, 14999–15007.
40 C. M. Drain, A. Varotto and I. Radivojevic, Self-organized
porphyrinic materials, Chem. Rev., 2009, 109, 1630–1658.
W. S. Liu and W. W. Qin, Carbon dot/NiAl-layered double
hydroxide hybrid material: facile synthesis, intrinsic
peroxidase-like catalytic activity and its application, RSC
Adv., 2015, 5, 95495–95503.
41 Y. Z. Chen, C. Y. Zhang, X. J. Zhang, X. M. Ou and 49 Y. L. Dong, H. G. Zhang, Z. U. Rahman, L. Su, X. J. Chen,
X. H. Zhang, One-step growth of organic single-crystal p-n
nano-heterojunctions with enhanced visible-light photo-
catalytic activity, Chem. Commun., 2013, 59, 9200–9202.
J. Hua and X. G. Chen, Graphene oxide-Fe3O4 magnetic
nanocomposites with peroxidase-like activity for colori-
metric detection of glucose, Nanoscale, 2012, 4, 3969–3976.
42 (a) R. A. W. Johnstone, A. J. Simpson and P. A. Stocks, 50 (a) Z. W. Chen, J. J. Yin, Y. T. Zhou, Y. Zhang, L. Song,
Porphyrins in aqueous amphiphilic polymers as peroxidase M. J. Song, S. L. Hu and N. Gu, Dual enzyme-like activities of
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 New J. Chem., 2018, 42, 18189--18200 | 18199