Full Paper
tions using the hybrid-functional HSE06[80] were carried out. Opti-
mized all-electron basis sets for all atoms were taken from [basis3,
basis4, basis5, basis6].[81–84] The Kohn–Sham matrix was diagonal-
ized on a k-mesh of 2 × 2 × 2 for 4/II and 4 × 4 × 4 for 4/I. The
convergence criterion was set to 10–7 a.u. The optimized lattice pa-
rameters are given in Table S13.
[5] C. Janiak, L. Uehlin, H.-P. Wu, P. Klüfers, H. Piotrowski, T. G. Scharmann, J.
Chem. Soc., Dalton Trans. 1999, 3121–3131.
[6] J. S. Miller, CrystEngComm 2005, 7, 458–461.
[7] C. Rovira, J. Veciana, CrystEngComm 2009, 11, 2031–2031.
[8] M. J. Zaworotko, Nat. Chem. 2011, 3, 653–653.
[9] M. U. Schmidt, U. Englert, J. Chem. Soc., Dalton Trans. 1996, 2077–2082.
[10] H. Ohtsu, M. Kawano, Chem. Commun. 2017, 53, 8818–8829.
[11] C. Näther, G. Bhosekar, I. Jeß, Inorg. Chem. 2007, 46, 8079–8087.
[12] S. Wöhlert, I. Jess, U. Englert, C. Näther, CrystEngComm 2013, 15, 5326–
5336.
Single-Crystal Structure Analysis: Data collections were per-
formed with an imaging plate diffraction system (IPDS-1) for 1–3
and 4/II and an IPDS-2 for 5 from STOE & CIE using Mo-Kα-radiation.
Structure solution was performed with SHELXT and structure refine-
ment was performed against F2 using SHELXL-2014.[85,86] A numeri-
cal absorption correction was applied using programs X-RED and X-
SHAPE as part of the program package X-Area.[87] All non-hydrogen
atoms were refined with anisotropic displacement parameters. The
C–H hydrogen atoms were positioned with idealized geometry
(methyl H atoms allowed to rotate but not to tip) and were refined
isotropic with Uiso(H) = –1.2 Ueq(C) (1.5 for methyl H atoms) using
a riding model. The O–H hydrogen atoms were in the difference
fourier map, their bond lengths were set to ideal values and after-
wards they were refined isotropic with Uiso(H) = –1.5 Ueq(O) using
a riding model. Selected crystal data and details of the structure
refinements can be found in Table S14.
[13] A. Karmakar, A. Paul, A. J. L. Pombeiro, CrystEngComm 2017, 19, 4666–
4695.
[14] C. Bartual-Murgui, L. Piñeiro-López, F. J. Valverde-Muñoz, M. C. Muñoz,
M. Seredyuk, J. A. Real, Inorg. Chem. 2017, 56, 13535–13546.
[15] I. Kalf, P. Mathieu, U. Englert, New J. Chem. 2010, 34, 2491–2495.
[16] V. Ischenko, U. Englert, M. Jansen, Chem. Eur. J. 2005, 11, 1375–1383.
[17] J. Werner, T. Runčevski, R. Dinnebier, S. G. Ebbinghaus, S. Suckert, C.
Näther, Eur. J. Inorg. Chem. 2015, 3236–3245.
[18] B. Nowicka, M. Reczynski, M. Rams, W. Nitek, M. Koziel, B. Sieklucka,
CrystEngComm 2015, 17, 3526–3532.
[19] J. Tao, R.-J. Wei, R.-B. Huang, L.-S. Zheng, Chem. Soc. Rev. 2012, 41, 703–
737.
[20] A. A. Khandar, A. Klein, A. Bakhtiari, A. R. Mahjoub, R. W. H. Pohl, Inorg.
Chim. Acta 2011, 366, 184–190.
[21] W. J. Zhang, X. B. Tang, H. W. Ma, W. H. Sun, C. Janiak, Eur. J. Inorg. Chem.
2008, 2830–2836.
[22] S. A. Bourne, Supramolecular Isomerism, John Wiley & Sons, Ltd, 2012,.
[23] D. M. Shin, I. S. Lee, D. Cho, Y. K. Chung, Inorg. Chem. 2003, 42, 7722–
7724.
[24] I. S. Lee, D. M. Shin, Y. K. Chung, Chem. Eur. J. 2004, 10, 3158–3165.
[25] D. Braga, M. Curzi, F. Grepioni, M. Polito, Chem. Commun. 2005, 2915–
2917.
CCDC 1847711 (for 1), 1847712 (for 2), 1847713 (for 3), 1847714
(for 4/II), and 1847715 (for 5) contain the supplementary crystallo-
Thermoanalytical Measurements: DTA-TG measurements were
performed in a dynamic nitrogen atmosphere in Al2O3 crucibles
using a STA PT 1600 thermobalance from Linseis. The DSC measure-
ments were performed using a DSC 1 Star System with STARe Excel-
lence Software from Mettler-Toledo AG. Thermomicroscopy was
performed using a hot-stage from Linkam and a microscope from
Olympus. All thermoanalytical instruments were calibrated using
standard references materials.
[26] T. Morita, Y. Asada, T. Okuda, S. Nakashima, Bull. Chem. Soc. Jpn. 2006,
79, 738–744.
[27] C.-F. Wang, Z.-Y. Zhu, X.-G. Zhou, L.-H. Weng, Q.-S. Shen, Y.-G. Yan, Inorg.
Chem. Commun. 2006, 9, 1326–1330.
[28]
J.-P. Zhang, X.-C. Huang, X.-M. Chen, Chem. Soc. Rev. 2009, 38, 2385–
2396.
[29] T. Neumann, M. Ceglarska, M. Rams, L. S. Germann, R. E. Dinnebier, S.
Suckert, I. Jess, C. Näther, Inorg. Chem. 2018, 57, 3305–3314.
[30] Y. P. Prananto, A. Urbatsch, B. Moubaraki, K. S. Murray, D. R. Turner, G. B.
Deacon, R. Batten Stuart, Aust. J. Chem. 2017, 70, 516–528.
[31] M. H. Sadhu, A. Solanki, T. Kundu, V. Hingu, B. Ganguly, S. B. Kumar,
Polyhedron 2017, 133, 8–15.
Other Physical Methods: The IR data were obtained using an ATI
Mattson Genesis Series FTIR Spectrometer, control software: WIN-
FIRST, from ATI Mattson. Atomic absorptions spectroscopy (AAS).
The AAS experiments were performed with a Perkin–Elmer Aanalyst
300.
[32] S. Suckert, M. Rams, M. M. Rams, C. Näther, Inorg. Chem. 2017, 56, 8007–
8017.
[33] I. Nawrot, B. Machura, R. Kruszynski, CrystEngComm 2016, 18, 2650–2663.
[34] F. A. Mautner, C. Berger, R. C. Fischer, S. S. Massoud, Inorg. Chim. Acta
2016, 439, 69–76.
Acknowledgments
[35] F. A. Mautner, C. Berger, R. C. Fischer, S. S. Massoud, Inorg. Chim. Acta
2016, 448, 34–41.
[36] D. A. Buckingham, Coord. Chem. Rev. 1994, 135, 587–621.
[37] M. Kabesová, R. Boca, M. Melník, D. Valigura, M. Dunaj-Jurco, Coord.
Chem. Rev. 1995, 140, 115–135.
[38] S. S. Massoud, A. E. Guilbeau, H. T. Luong, R. Vicente, J. H. Albering, R. C.
Fischer, F. A. Mautner, Polyhedron 2013, 54, 26–33.
[39] C. D. Mekuimemba, F. Conan, A. J. Mota, M. A. Palacios, E. Colacio, S. Triki,
Inorg. Chem. 2018, 57, 2184–2192.
This project was supported by the Deutsche Forschungsge-
meinschaft (Project No. NA 720/5-2) and the State of Schleswig-
Holstein. We thank Prof. Dr. Wolfgang Bensch for access to his
experimental facilities, Christoph Krebs for the AAS measure-
ments and Dr. Rolf Hilfiker for helpful discussions on the ther-
modynamic relations. F. P. thanks the Computer Service Group
at MPI-FKF (Stuttgart, Germany) for providing computational re-
sources.
[40] J. Palion-Gazda, B. Machura, F. Lloret, M. Julve, Cryst. Growth Des. 2015,
15, 2380–2388.
[41] J. L. Guillet, I. Bhowmick, M. P. Shores, C. J. A. Daley, M. Gembicky, J. A.
Golen, A. L. Rheingold, L. H. Doerrer, Inorg. Chem. 2016, 55, 8099–8109.
[42] B. Machura, A. Świtlicka, P. Zwoliński, J. Mroziński, B. Kalińska, R. Kruszyn-
ski, J. Solid State Chem. 2013, 197, 218–227.
Keywords: Coordination compounds · Crystal structures ·
Thermal properties · Enantiotropism · Polymorphism
[43] S. Wöhlert, M. Wriedt, T. Fic, Z. Tomkowicz, W. Haase, C. Näther, Inorg.
Chem. 2013, 52, 1061–1068.
[44] R. González, A. Acosta, R. Chiozzone, C. Kremer, D. Armentano, G.
De Munno, M. Julve, F. Lloret, J. Faus, Inorg. Chem. 2012, 51, 5737–5747.
[45] B. Machura, A. Świtlicka, I. Nawrot, J. Mroziński, R. Kruszynski, Polyhedron
2011, 30, 832–840.
[1] B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629–1658.
[2] C. Näther, S. Wöhlert, J. Boeckmann, M. Wriedt, I. Jeß, Z. Anorg. Allg.
Chem. 2013, 639, 2696–2714.
[3] D. Braga, F. Grepioni, G. R. Desiraju, Chem. Rev. 1998, 98, 1375–1406.
[4] C. Janiak, Dalton Trans. 2003, 2781–2804.
Eur. J. Inorg. Chem. 0000, 0–0
9
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim