Journal of the American Chemical Society
Page 6 of 7
(22) Yue, Y. K.; Huo, F. J.; Yue, P.; Meng, X. M.; Salamanca, J. C.;
(201903D421069), and Scientific Instrument Center of Shanxi
University (201512).
Escobedo, J. O.; Strongin, M. R. Yin, C. X. In situ lysosomal cysteine-
specific targeting and imaging during dexamethasone-induced apoptosis.
Anal. Chem. 2018, 90, 7018-7024,
(23) Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of
intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50-61.
(24) Balce, D. R.; Allan, E. R. O.; McKenna, N.; Yates, R. M. γ-
Interferon-inducible lysosomal thiol reductase (GILT) maintains
phagosomal proteolysis in alternatively activated macrophages. J. Biol.
Chem. 2014, 289, 31891-31904.
(25) Wu, L.; Li, X.; Ling, Y. C.; Huang, Jia, N. Morpholine derivative-
functionalized carbon dots-based fluorescent probe for highly selective
lysosomal imaging in living cells. ACS Appl. Mater. Interfaces 2017, 9 (34),
28222-28232.
(26) Settembre, C.; Fraldi, A.; Medina, D. L.; Ballabio, A.; Signals
from the lysosome: a control centre for cellular clearance and energy
metabolism. Nat. Rev. Mol. Cell Biol. 2013, 14, 283-296.
(27) Tamima, U.; Santra, M.; Song, C. W.; Reo, Y. J.; Ahn, K. H. A
benzopyronin-based two-photon fluorescent probe for ratiometric
imaging of lysosomal bisulfite with complete spectral separation. Anal.
Chem. 2019, 91, 10779-10785.
(28) Wu, M. Y.; Wang, Y.; Liu, Y. H.; Yu, X. Q. Dual-site lysosome-
targeted fluorescent probe for separate detection of endogenous
biothiols and SO2 in living cells. J. Mater. Chem. B 2018, 6, 4232-4238.
(29) Wan, Q. Q.; Chen, S. M.; Shi, W.; Li, L. H.; Ma, H. M.
Lysosomal pH rise during heat shock monitored by a lysosome-targeting
near-infrared ratiometric fluorescent probe. Angew. Chem. Int. Ed. 2014,
53, 10916-10920.
(30) Wu, L. L.; Wang, Y.; James, T. D.; Jia, N. Q.; Huang, C. A
hemicyanine based ratiometric fluorescence probe for mapping
lysosomal pH during heat stroke in living cells. Chem. Commun. 2018, 54,
5518-5521.
(31) Yu, H. B.; Xiao, Y.; Jin, L. J. A lysosome-targetable and two-
photon fluorescent probe for monitoring endogenous and exogenous
nitric oxide in Living cells. J. Am. Chem. Soc. 2012, 134, 17486-17489.
(32) Yuan, L.; Wang, L.; Agrawalla, B. K.; Park, S. J.; Zhu, H.;
Sivaraman, B.; Peng, J. J.; Xu, Q. H.; Chang, Y. T. Development of
targetable two-photon fluorescent probes to image hypochlorous acid in
mitochondria and lysosome in live cell and inflamed mouse model. J.
Am. Chem. Soc. 2015, 137, 5930-5938.
(33) Liu, C. L.; Zhang, R.; Zhang, W. Z.; Liu, J. P.; Wang, Y. L.; Du,
Z. B.; Song, B.; Xu, Z. P.; Yuan, J. L. “Dual-key-and-lock” ruthenium
complex probe for lysosomal formaldehyde in cancer cells and tumors. J.
Am. Chem. Soc. 2019, 141, 8462-8472.
(34) Sapsford, K.E.; Berti, L.; Medintz, I.L. Materials for fluorescence
resonance energy transfer analysis: Beyond traditional donor-ccceptor
combinations. Angew. Chem. Int. Ed. 2006, 45, 4562-4588.
(35) Zhang, W. J.; Liu, T.; Huo, F. J.; Ning, P.; Meng, X. M.; Yin, C.
X. Reversible Ratiometric Fluorescent Probe for Sensing Bisulfate/H2O2
and Its Application in Zebrafish. Anal. Chem. 2017, 89, 8079-8083.
(36) Ma, Y.Y.; Gao, W.J.; Zhu, L.L.; Zhao, Y.P.; Lin, W.Y.
Development of a unique reversible fluorescent probe for tracking
endogenous sulfur dioxide and formaldehyde fluctuation in vivo. Chem.
Commun. 2019, 55, 11263-11266.
(37) Gao, Z.M.; Liu, F.H.; Yin, P.; Wan, C.R.; He, S.S.; Liu, X.X.;
Zhao, H.; Liu, T.; Xu, J.Q.; Guo, S.N. Inhibition of heat-induced
apoptosis in rat small intestine and IEC-6 cells through the AKT
signaling pathway. BMC Vet Res. 2013, 9, 241-249.
(38) Liu, F.; Cottrell, J.J.; Furness, J.B.; Rivera, L.R.; Kelly, F.W.;
Wijesiriwardana, U.; Pustovit, R.V.; Fothergill, L.J.; Bravo, D.M.; Celi, P.;
Leury, B.J.; Gabler, N.K.; Dunshea, F.R. Selenium and vitamin E
together improve intestinal epithelial barrier function and alleviate
oxidative stress in heat-stressed pigs. Exp Physiol. 2016, 101, 801-810.
1
2
3
4
5
6
7
8
REFERENCES
(1) Li, H. Y.; Shi, W.; Li, X. H.; Hu, Y. M.; Fang, Y.; Ma, H. M.
Ferroptosis accompanied by •OH generation and cytoplasmic viscosity
increase revealed via dual-functional fluorescence probe. J. Am. Chem.
Soc. 2019, 141, 18301-18307.
(2) Chen, Z. Y.; Mu, X. L.; Han, Z.; Yang, S. P.; Zhang, C. L.; Guo, Z.
J.; Bai, Y.; He, W. J. An optical/photoacoustic dual-modality probe:
ratiometric in/ex vivo imaging for stimulated H2S upregulation in mice.
J. Am. Chem. Soc. 2019, 141, 17973-17977.
(3) Chan, J.; Dodani, S. C.; Chang, C. J. Reaction-based small-
molecule fluorescent probes for chemoselective bioimaging. Nat. Chem.
2012, 4, 973-984.
(4) Stich, M. I. J.; Fischer, L. H.; Wolfbeis, O. S. Multiple fluorescent
chemical sensing and imaging. Chem. Soc. Rev. 2010, 39, 3102-3114.
(5) Sun, W.; Guo, S. G.; Hu, C.; Fan, J. L.; Peng, X. J. Recent
development of chemosensors based on cyanine platforms. Chem. Rev.
2016, 16, 7768-7817.
(6) Li, M. L.; Xia, J.; Tian, R. S.; Wang, J. Y.; Fan, J. L.; Du, J. J.; Long,
S. R.; Song, X. Z.; Foley, J. W.; Peng, X. J. Near-infrared light-initiated
molecular superoxide radical generator: rejuvenating photodynamic
therapy against hypoxic tumors. J. Am. Chem. Soc. 2018, 140, 14851-
14859.
(7) Szymanski, V.; Beierle, J. M.; Kistemaker, H. A. V.; Velema, W. A.;
Feringa, B. L. Reversible photocontrol of biological systems by the
incorporation of molecular photoswitches. Chem. Rev. 2013, 113, 6114-
6178.
(8) Shao, Q.; Xing, B. Photoactive molecules for applications in
molecular imaging and cell biology. Chem. Soc. Rev. 2010, 39, 2835-2846.
(9) Zou, Y.; Xiao, S. Z.; Li, F. Y.; Li, C. Y.; Gao, X.; Wu, J. C.; Yu, M.
X.; Huang, C. H. Amphiphilic diarylethene as a photoswitchable probe
for imaging living cells. J. Am. Chem. Soc. 2008, 130, 15750-15751.
(10) Klajn, R. Spiropyran-based dynamic materials, Chem. Soc. Rev.
2014, 43, 148-184.
(11) Samanta, D.; Galaktionova, D.; Gemen, J.; Shimon, L. J. W.;
Diskin-Posner, Y.; Avram, L.; Kral, P.; Klajn, R. Reversible chromism of
spiropyran in the cavity of a flexible coordination cage. Nat. Commun.
2018, 9, 641-650.
(12) Zou, Y.; Xiao, S. Z.; Li, F. Y.; Li, C. Y.; Gao, X.; Wu, J. C.; Yu,
M. X.; Huang, C. H. Amphiphilic diarylethene as a photoswitchable
probe for imaging living cells. J. Am. Chem. Soc. 2008, 130, 15750-15751.
(13)Zhang, J. J.; Fu, Y. X.; Han, H. H.; Zang, Y.; Li, J.; He, X. P.;
Feringa, B. L.; Tian, H. Remote light-controlled intracellular target
recognition by photochromic fluorescent glycoprobes. Nat. Commun.
2017, 8, 987-996.
(14) Zhang, W. J.; Huo, F. J.; Yin, C. X. Photocontrolled single-/dual-
site alternative fluorescence probes distinguishing detection of H2S/SO2
in vivo. Org. Lett. 2019, 21, 5277-5280.
(15) Patz, J. A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J. A.
Impact of regional climate change on human health. Nature 2005, 438,
310-317.
(16) Wen, Y.; Zhang, W. J.; Liu, T.; Huo, F. J.; Yin, C. X. Pinpoint
diagnostic kit for heat stroke by monitoring lysosomal pH. Anal. Chem.
2017, 89, 11869-11874.
(17) Argaud, L.; Ferry, T.; Le, Q. H. Short- and Long-term Outcomes
of Heatstroke Following the 2003 Heat Wave in Lyon, France. Arch.
Intern. Med. 2007, 167, 2177-2183.
(18) Epstein, Y.; Yanovich, R. Heatstroke. N. Engl. J. Med. 2019, 380,
2449-2459.
(19) Bouchama. A.; Knochel, J. P. Heat stroke. N. Engl. J. Med. 2002,
346, 1978-1988.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) Yi, G.; Li, L.; Luo, M.J.; He, X.; Zou, Z.M.; Gu, Z.T.; Su, L. Heat
stress induces intestinal injury through lysosome- and mitochondria-
dependent pathway in vivo and in vitro. Oncotarget, 2017, 8, 40741-40755.
(21) Kourtis, N.; Nikoletopoulou, V.; Tavernarakis, N. Small heat-
shock proteins protect from heat-stroke-associated neurodegeneration.
Nature 2012, 490, 213-218.
6
ACS Paragon Plus Environment