Selective hydrogenation of tunicamycins
NJ Price et al
7
prepared by catalytic hydrogenation with Rh/Al2O3 as described, and subse-
quently treated for 18 h at room temperature using 0.25 M aqueous sodium
hydroxide. The products were analyzed directly by MALDI TOF MS. In
addition, a small scale hydrolysis was undertaken in situ in an NMR tube using
10 mg of DHU in 0.25 M sodium deuteride dissolved in deuterated water. The
reaction was monitored by 1H-NMR. Control reactions were undertaken by
replacing the NaOD with deuterated trifluoroacetic acid or under neutral
conditions in D2O.
12 Tsvetanova, B. C., Keimle, D. J. & Price, N. P. J. Biosynthesis of tunicamycin
andmetabolic origin of the 11-carbon dialdose sugar, tunicamine. J. Biol. Chem. 277,
35289–35296 (2002).
13 Wyszynski, F. J., Hesketh, A. R., Bibb, M. J. & Davis, B. G. Dissecting tunicamycin
biosynthesis by genome mining: cloning and heterologous expression of a minimal gene
cluster. Chem. Sci 1, 581–589 (2010).
14 Chen, W. et al. Characterization of the tunicamycin gene cluster unveiling unique steps
involved in its biosynthesis. Protein Cell 1, 1093–1105 (2010).
15 Hakulinen, J. K. et al. MraY-antibiotic complex reveals details of tunicamycin mode
of action. Nat. Chem. Biol. 13, 265–267 (2017).
16 Chung, B. C. et al. Crystal structure of MraY, an essential membrane enzyme
for bacterial cell wall synthesis. Science 341, 1012–1016 (2013).
17 Chung, B. C. et al. Structural insights into inhibition of lipid I production in bacterial
cell wall synthesis. Nature 533, 557–560 (2016).
CONFLICT OF INTEREST
The authors declare no conflict of interest.
18 Price, N. P. J. et al. Modified tunicamycins with reduced eukaryotic toxicity that
enhance the antibacterial activity of β-lactams. J. Antibiot (e-pub ahead of print 27
19 House, C. H. & Miller, S. L. Hydrolysis of dihydrouridine and related compounds.
Biochemistry 35, 315–320 (1996).
ACKNOWLEDGEMENTS
We thank Trina Hartman for technical assistance, and Dr Joseph O Rich for pre-
review of the manuscript. A provisional patent application (patent no. 62/450,760)
has been filed. BY acknowledges the support of the National Natural Science
Foundation of China (21372253 and 21432012). Mention of any trade names or
commercial products is solely for the purpose of providing specific information
and does not imply recommendation or endorsement by the US Department of
Agriculture. USDA is an equal opportunity provider and employer.
20 Igo-Kemenes, T.
& Zachau, H. G. On the specificity of the reduction of
transfer ribonucleic acids with sodium borohydride. Eur. J. Biochem. 10,
549–556 (1969).
21 Cerutti, P. & Miller, N. Selective reduction of yeast transfer ribonucleic acid with
sodium borohydride. J. Mol. Biol. 26, 55–66 (1967).
22 Kochetkov, N. K., Budovskii, E. I., Shibaev, V. N.
& Eliseeva, G. I. The
synthesis of dihydrouridine diphosphate glucose. Russ. Chem. Bull. 14,
884–885 (1965).
23 Cerutti, P., Ikeda, K.
& Witkop, B. The selective photoreduction of uridine in
polynucleotides. J. Am. Chem. Soc. 87, 2505–2507 (1965).
24 Cerutti, P., Kondo, Y., Landis, W. R. & Witkop, B. Photoreduction of uridine and
reduction of dihydrouridine with sodium borohydride. J. Am. Chem. Soc. 90,
771–775 (1968).
25 Choi, J. H., Kim, D. W. & Shim, S. C. Photo-enhanced reduction of carbonyl compounds
by sodium borohydride. Tetrahedron Lett. 27, 1157–1160 (1986).
26 Hu, T. & Corey, E. J. A novel and selective photoisomerization of allylic benzoates. Org.
Lett. 3, 3547–3548 (2001).
1
2
Tamura, G Tunicamycin, (Japan Scientific Societies Press, Tokyo, Japan, 1982).
Heifetz, A., Keenan, R. W. & Elbein, A. D. Mechanism of action of tunicamycin on
theUDP-GlcNAc: dolichyl phosphate GlcNAc-1-phosphate transferase. Biochemistry
18, 2186–2192 (1979).
Price, N. P. & Momany, F. A. Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-
P transferases. Glycobiology 15, 29–42 (2005).
Lehrman, M. A. A family of UDP-GlcNAc/MurNAc: polyisoprenol-P GlcNAc/MurNAc-1-
Ptransferases. Glycobiology 4, 768–771 (1994).
Eckardt, K Tunicamycins, streptovirudins, and corynetoxins, a special subclass of Q8
3
4
5
6
27 Behm-Ansmant, I., Helm, M.
& Motorin, Y. Use of specific chemical reagents
for detection of modified nucleotides in RNA. J. Nucleic Acids 2011, 1–17
(2011).
28 Kimura, K.-I. & Bugg, T. D. H. Recent advances in antimicrobial nucleoside antibiotics
targeting cell wall biosynthesis. Nat. Prod. Rep. 20, 252–273 (2003).
29 Chen, W. et al. Natural and engineered biosynthesis of nucleoside antibiotics in
Actinomycetes. J. Ind. Microbiol. Biotechnol. 43, 401–417 (2016).
nucleoside antibiotics. J. Nat. Prod. 46, 544–550 (1983).
Doroghazi, J. R. et al. Genome sequences of three tunicamycin-producing streptomyces
strains, S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus
ATCC 31396. J. Bacteriol. 193, 7021–7022 (2011).
Eckardt, K., Ihn, W., Tresselt, D. & Krebs, D. The chemical structures of streptovirudins.
J. Antibiot 34, 1631–1632 (1981).
Vogel, P., Stynes, B. A., Coackley, W., Yeoh, G. T. & Petterson, D. S. Glycolipid toxins
from parasitised annual ryegrass: a comparison with tunicamycin. Biochem. Biophys.
Res. Commun. 105, 835–840 (1982).
Edgar, J. A. et al. Corynetoxins, causative agents of annual ryegrass toxicity; their
identification as tunicamycin group antibiotics. J. Chem. Soc. Commun. 1982,
222–224 (1982).
7
8
30 Kaysser, L. et al. Identification of
a napsamycin biosynthesis gene cluster by
genome mining. Chembiochem. 12, 477–487 (2011).
31 Yoshida, M. et al. A novel antifungal antibiotic, FR-900848. I. Production, isolation,
physico-chemical and biological properties. J. Antibiot. 43, 748–754 (1990).
32 Zafrir Ilan, E. et al. Farnesides A and B, sesquiterpenoid nucleoside ethers from a
marine-derived Streptomyces sp., strain CNT-372 from Fiji. J. Nat. Prod. 76,
1815–1818 (2013).
9
10 Price, N. P. et al. Quinovosamycins: new tunicamycin-type antibiotics in which the α, β-
1″,11'-linked N-acetylglucosamine residue is replaced by N-acetylquinovosamine. J.
Antibiot. 69, 637–646 (2016).
11 Price, N. P. J. & Tsvetanova, B. C. Biosynthesis of the tunicamycins: a review. J.
Antibiot 60, 485–491 (2007).
33 Takagi, M. et al. Anti-influenza virus compound from Streptomyces sp. RI18. Org. Lett.
12, 4664–4666 (2010).
34 Hiratsuka, T. et al. Biosynthesis of the structurally unique polycyclopropanated
polyketide-nucleoside hybrid jawsamycin (FR-900848). Angew. Chem. Int. Ed. Engl.
53, 5423–5426 (2014).
Supplementary Information accompanies the paper on The Journal of Antibiotics website (http://www.nature.com/ja)
The Journal of Antibiotics