Unlocking the Coordination Chemistry of Barium Pyrazolates
¯
0
8
8
.50ϫ0.06ϫ0.06 mm, triclinic, space group P1 (no. 2), a =
(w), 1743 (w), 1665 (w), 1601 (s), 1526 (m), 1511 (m), 1359 (m),
1337 (m), 1292 (m), 1264 (m), 1218 (m), 1180 (w), 1161 (m), 1133
.4996(8), b = 9.7276(9), c = 11.6162(11) Å, α = 89.138(2), β =
9.316(2), γ = 84.284(2)°, V = 955.50(16) Å , Z = 2, Dcalcd. = 1.45 g/
cm , F(000) = 420, T = 90(2) K, 2θmax = 60.00°; 10952 reflections (m), 836 (m), 808 (m), 784 (s), 756 (s), 730 (w), 695 (s) cm .
3
(m), 1098 (w), 1076 (m), 1052 (s), 1031 (s), 965 (s), 945 (m), 909
3
–1
collected, 5458 unique (Rint = 0.0205). Final GooF = 1.082, R
.0299, wR = 0.0767, R indices based on 5458 reflections with
IϾ2σ(I) (refinement on F ), 209 parameters, 6 restraints. Lp and
1
=
C
48
H
70BaN10 (924.46), colorless blocks, 0.30ϫ0.22ϫ0.18 mm,
0
2
monoclinic, space group C2/c, a = 26.023(2), b = 11.970(1), c =
17.170(1) Å, β = 114.084(1)°, V = 4882.67 Å , Z = 4, Dcalcd.
1.100 g/cm , F(000) = 1672, T = 123(2) K, 2θmax = 55.00°; 23882
reflections collected, 5609 unique (Rint = 0.0281). Final GooF =
2
3
=
–1
3
absorption corrections applied, µ = 2.082 mm .
[
{Ba(MePhpz) (tmeda)} ] (5). Method B: The general procedure was
2
2
1 2
1.117, R = 0.0251, wR = 0.0645, R indices based on 5609 reflec-
applied for barium (0.27 g, 2.0 mmol), 3-methyl-5-phenylpyrazole
0.63 g, 4.0 mmol), toluene (40 mL) and TMEDA (1.5 mL) with
2
tions with IϾ2σ(I) (refinement on F ), 294 parameters, 84 re-
straints. Lp and absorption corrections applied, µ = 0.846 mm .
Compound 7 contains a lattice TMEDA molecule, which was
highly disordered, non-resolvable, and therefore removed from the
crystal structure refinement using the “squeeze” function in the
(
–1
dry ammonia (10 mL). The solvent was evaporated to 20 mL, and
layered with hexane to yield small yellow blocks upon cooling to
1
0
°C. Yield: 0.68 g (69%); m.p. 135–140 °C. H NMR ([D
6
]ben-
3
zene): δ = 8.12 [s, 8 H, o-H(Ph)], 7.36 [t, J(H,H) = 7.2 Hz, 8 H,
m-H(Ph)], 7.23 [s, 4 H, p-H(Ph)], 6.65 [s, 4 H, C4(pz)-H], 2.36, 2.11
[21]
program package PLATON.
s, 12 H, Me), 1.78 (s, 32 H, TMEDA) ppm. 1 C NMR ([D
3
Supporting Information (see footnote on the first page of this arti-
cle): Additional structure descriptions, selected bond lengths and
angles for compounds 1–4, 6, and 7.
(
6
]ben-
zene): δ = 152.4 [C(pz)-Ph], 150.3 [C(pz)-Me], 136.1 [i-C(Ph)], 129.3
o-C(Ph)], 126.9 [p-C(Ph)], 126.1 [m-C(Ph)], 105.7 [CH(pz)], 57.6
NCH ), 45.3 (CH N), 14.1 (Me) ppm. IR (Nujol): ν˜ = 3051 (m),
949 (w), 1889 (w), 1811 (w), 1762 (w), 1674 (w), 1599 (s), 1568
[
(
1
2
3
Acknowledgments
(
(
(
s), 1505 (s), 1411 (s), 1292 (m), 1253 (m), 1198 (m), 1161 (m), 1131
m), 1098 (m), 1071 (m), 1020 (s), 995 (m), 962 (m), 916 (m), 949
m), 916 (m), 834 (m), 783 (s), 762 (s), 695 (s), 671 (m) cm .
We gratefully acknowledge support from the National Science
Foundation (CHE-0108098 and CHE-0505863), and the Australian
Research Council. Purchase of the X-ray diffraction equipment was
made possible with grants from the National Science Foundation
–
1
[
{Ba(Ph
2
pz) (tmeda)} ]·TMEDA (6). Method B: The general pro-
2
2
cedure was applied for barium (0.27 g, 2.0 mmol), 3,5-diphenylpyr-
azole (0.88 g, 4.0 mmol), toluene (10 mL) and TMEDA (15 mL)
with condensed anhydrous ammonia (10 mL). Yield: 0.78 g (52%);
(
CHE-9527858 and CHE-0234912), Syracuse University and the
W. M. Keck Foundation.
dec. Ͼ350 °C; 1H NMR ([D
8
7
]benzene): δ = 8.03, [d, J(H,H) =
3
6
3
.3 Hz, 16 H, o-H(Ph)], 7.36 [t, J(H,H) = 8.3 Hz, 16 H, m-H(Ph)],
.17 [m, 8 H, p-H(Ph)], 7.02 [d, 4 H, C4(pz)-H], 2.22 (s, 12 H,
), 2.08 (s, 36 H, NCH ]benzene): δ =
) ppm. 13C NMR ([D
29.3 [o-C(Ph)], 126.9 [p-C(Ph)], 126.0 [m-C(Ph)], 102.2 [C4(pz)],
8.6 (NCH ), 46.3 (NCH ) ppm; C(pz)-Ph and i-C(Ph) unresolved.
[
1] L. G. Hubert-Pfalzgraf, J. Mater. Chem. 2004, 14, 3113–3123.
[2] G. A. Battiston, R. Gerbasi, G. Carta, F. Marchetti, C. Pettin-
ari, A. Rodriguez, D. Barreca, C. Maragno, E. Tondello, J.
Electrochem. Soc. 2006, 153, F35–F38.
NCH
2
3
6
1
5
[
3] a) H. M. El-Kaderi, M. J. Heeg, C. H. Winter, Polyhedron
2
3
2
005, 24, 645–653; b) H. M. El-Kaderi, M. J. Heeg, C. H. Win-
IR (Nujol): ν˜ = 3059 (m), 3032 (m), 1946 (w), 1883 (w), 1820 (w),
751 (w), 1668 (w), 1597 (s), 1522 (m), 1338 (m), 1290 (m), 1260
m), 1216 (m), 1175 (m), 1155 (m), 1038 (s), 966 (s), 909 (m), 886
ter, Eur. J. Inorg. Chem. 2005, 2081–2088.
1
[
4] a) J. Hitzbleck, G. B. Deacon, K. Ruhlandt-Senge, Eur. J. Inorg.
Chem. 2007, 592–601; b) J. Hitzbleck, A. Y. O’Brien, G. B.
Deacon, K. Ruhlandt-Senge, Inorg. Chem. 2006, 45, 10329–
(
(
–
1
2
s), 842 (w), 799 (m), 755 (s), 695 (s) cm . C78H92Ba N14 (1500.29),
¯
colorless needles, 0.28ϫ0.08ϫ0.05 mm, triclinic, space group P1
no. 2), a = 12.821(3), b = 13.055(3), c = 13.758(3) Å, α = 94.26(3),
1
0337; c) J. Hitzbleck, G. B. Deacon, K. Ruhlandt-Senge, An-
(
gew. Chem. Int. Ed. 2004, 43, 5218–5220; d) J. Hitzbleck, A. Y.
O’Brien, C. M. Forsyth, G. B. Deacon, K. Ruhlandt-Senge,
Chem. Eur. J. 2004, 10, 3315–3323.
3
β = 110.74(3), γ = 111.74(3)°, V = 1943.6(11) Å , Z = 1, Dcalcd.
3
=
1.183 g/cm , F(000) = 704, T = 94(2) K, 2θmax = 50.00°; 15865
reflections collected, 6835 unique (Rint = 0.0326). Final GooF =
.029, R = 0.0461, wR = 0.1187, R indices based on 6835 reflec-
tions with IϾ2σ(I) (refinement on F ), 371 parameters, 108 re-
[5] I. Kobrsi, J. E. Knox, M. J. Heeg, H. B. Schlegel, C. H. Winter,
Inorg. Chem. 2005, 44, 4894–4896.
1
1
2
2
[6] D. Pfeiffer, M. J. Heeg, C. H. Winter, Inorg. Chem. 2000, 39,
377–2384.
2
–
1
straints. Lp and absorption corrections applied, µ = 1.050 mm .
Heavy disorder of lattice TMEDA could not be handled by refining
split positions and required treatment with the “squeeze” function
in the PLATON program package.[
[
7] a) A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford,
Clarendon, 1984; b) L. Pauling, The Nature of the Chemical
Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960.
21]
[8] a) A. Y. O’Brien, Doctoral Thesis, Syracuse University, Syra-
cuse, NY, 2005; b) J. Hitzbleck, Doctoral Thesis, Syracuse Uni-
versity, Syracuse, NY, 2004.
2 2 2
[Ba(Ph pz) (tmeda) ]·TMEDA (7). Method B: The general pro-
cedure was applied for barium (0.27 g, 2.0 mmol), 3,5-diphenylpyr-
azole (0.88 g, 4.0 mmol), toluene (20 mL) and TMEDA (30 mL),
with condensed anhydrous ammonia (10 mL). The solvent was re-
[9] A. Steiner, G. T. Lawson, B. Walfort, D. Leusser, D. Stalke, J.
Chem. Soc. Dalton Trans. 2001, 219–221.
[10] a) G. B. Deacon, C. M. Forsyth, A. Gitlits, R. Harika, P. C.
Junk, B. W. Skelton, A. H. White, Angew. Chem. Int. Ed. 2002,
41, 3249–3251; b) S. Beaini, G. B. Deacon, A. P. Erven, P. C.
Junk, D. R. Turner, Chem. Asian J. 2007, 2, 539–550; c) S.-Á.
Cortés-Llamas, R. Hernández-Lamoneda, M.-Á. Velázquez-
Carmona, M.-A. Muñoz-Hernández, R. A. Toscano, Inorg.
Chem. 2006, 45, 286–294; d) G. B. Deacon, B. M. Gatehouse,
S. Nickel, S. N. Platts, Aust. J. Chem. 1991, 44, 613–621; e)
J. E. Cosgriff, G. B. Deacon, B. M. Gatehouse, H. Hemling, H.
Schumann, Angew. Chem. Int. Ed. Engl. 1993, 32, 871–875; f)
J. E. Cosgriff, G. B. Deacon, B. M. Gatehouse, Aust. J. Chem.
duced to 20 mL and cooling to –20 °C yielded colorless prisms.
1
Yield: 0.47 g (51%); m.p. Ͼ350 °C; H NMR ([D
6
]benzene): δ =
3
3
8
8
4
.10 [d, J(H,H) = 7.5 Hz, 8 H, o-H(Ph)], 7.41 [t, J(H,H) = 7.6 Hz,
H, m-H(Ph)], 7.32 [s, 2 H, C4(pz)-H], 7.21 [t, J(H,H) = 7.3 Hz,
3
H, p-H(Ph)], 2.14, 1.98 (br. d, 32 H, TMEDA) ppm, indicating
1
3
loss of the lattice TMEDA molecule. C NMR ([D
52.2 [C(pz)-Ph], 136.6 [ipso-C(Ph)], 129.6 [o-C(Ph)], 126.7 [p-
C(Ph)], 125.9 [m-C(Ph)], 103.1 [C4(pz)], 58.1 (NCH ), 46.1 (NCH
ppm. IR (Nujol): ν˜ = 3062 (m), 3031 (m), 1945 (w), 1874 (w), 1800
6
]benzene): δ =
1
2
3
)
Eur. J. Inorg. Chem. 2008, 172–182
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
181