Z.-Q. Liu et al. / Catalysis Communications 16 (2011) 133–139
139
[8] R. Rink, J.H.L. Spelberg, R.J. Pieters, J. Kingma, M. Nardini, R.M. Kellogg, B.W. Dijkstra,
D.B. Janssen, Journal of the American Chemical Society 121 (1999) 7417–7418.
[9] K. Faber, M. Mischitz, W. Kroutil, Acta Chemica Scandinavica 50 (1996) 249–258.
[10] S. Hwang, C.Y. Choi, E.Y. Lee, Biotechnology and Bioprocess Engineering 13
(2008) 453–457.
[11] K.E. Jaeger, T. Eggert, A. Eipper, M.T. Reetz, Applied Microbiology and Biotechnol-
ogy 55 (2001) 519–530.
[12] W.J. Choi, Applied Microbiology and Biotechnology 84 (2009) 239–247.
[13] M. Kotik, V. Stepanek, M. Grulich, P. Kyslik, A. Archelas, Journal of Molecular Ca-
talysis B: Enzymatic 65 (2010) 41–48.
[14] Y.C. Jiang, J.Y. Wu, C. Liu, M.C. Hu, S.N. Li, Q.G. Zhai, Catalysis Communications 11
(2010) 727–731.
[15] I.K. Song, S.H. Lee, S.H. Song, D.R. Park, J.C. Jung, J.H. Song, S.Y. Woo, W.S. Song,
M.S. Kwon, Catalysis Communications 10 (2008) 160–164.
[16] W.J. Choi, E.Y. Lee, S.J. Yoon, S.T. Yang, C.Y. Choi, Journal of Bioscience and Bioen-
gineering 88 (1999) 339–341.
(R)-(−2.944 kcal/mol) and (S)-epichlorohydrin (−2.928 kcal/mol)
were close, there was still a big difference in d values between (R)-
(5.7 Å) and (S)-epichlorohydrin (4.3 Å), which leads to the EH obtained
in this study was more active on (S)-epichlorohydrin. Regulating the d
value and making the distance closer between (S)-epichlorohydrin
and Asp 190 would help to improve the activity and enantioselectivity
of this enzyme on (S)-epichlorohydrin. In addition, to improve the
thermo-stability, enantioselectivity, productivity and activity of EH,
other strategies such as rational design or by directed molecular evolu-
tion of proteins are also powerful tools [34] to combine advantages of
EH from different origins [35] based on the investigation of the structure
modeling and docking.
[17] H.S. Kim, J.H. Lee, S. Park, E.Y. Lee, Biotechnology and Bioprocess Engineering 9
(2004) 62–64.
[18] H.S. Kim, S.J. Lee, E.J. Lee, J.W. Hwang, S. Park, S.J. Kim, E.Y. Lee, Journal of Molec-
ular Catalysis B: Enzymatic 37 (2005) 30–35.
[19] H.B. Zheng, M.T. Reetz, Journal of the American Chemical Society 132 (2010)
15744–15751.
[20] H. Visser, C.A.G.M. Weijers, A.J.J. van Ooyen, J.C. Verdoes, Biotechnology Letters 24
(2002) 1687–1694.
[21] R. Rydzanicz, X.S. Zhao, P.E. Johnson, Nucleic Acids Research 33 (2005)
W521–W525.
[22] A. Villalobos, J.E. Ness, C. Gustafsson, J. Minshull, S. Govindarajan, BMC Bioinfor-
matics 7 (2006) 285–292.
In conclusion, R. toruloides CBS14 EH gene was successfully syn-
thesized, cloned and expressed in E. coli. The optimal pH and temper-
ature of purified EH were found to be 7.5 and 35 °C, respectively. The
recombinant EH was sensitive to temperature, and the activity de-
creased significantly at 45 °C. The values of apparent Km and Vmax
were calculated to be 0.5953 mol/l and 0.0105 mol/(L min) with the
epichlorohydrin as substrate. The application of recombinant EH in
racemic resolution of (R,S)-epichlorohydrin showed that the e.e.
value and productivity of (R)-epichlorohydrin reached around 100%
and 18%. After further modification by rational or irrational protein
design methods, this recombinant EH could be a potential candidate
for upscale production of (R)-epichlorohydrin.
[23] U.K. Laemmli, Nature 227 (1970) 680–685.
[24] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson,
Journal of Computational Chemistry 19 (1998) 1639–1662.
[25] N.A.E. Kronenburg, J.A.M. de Bont, Enzyme and Microbial Technology 28 (2001)
210–217.
[26] N. Sakai, Y. Tajika, M. Yao, N. Watanabe, I. Tanaka, Proteins 57 (2004) 869–873.
[27] C.L. Hung, J.H. Liu, W.C. Chiu, S.W. Huang, J.K. Hwang, W.C. Wang, The Journal of
Biological Chemistry 282 (2007) 12220–12229.
[28] J. Maritz, H.M. Krieg, C.A. Yeates, A.L. Botes, J.C. Breytenbach, Biotechnology Let-
ters 25 (2003) 1775–1781.
[29] M.S. Smit, Trends in Biotechnology 22 (2004) 123–129.
[30] S. Karboune, A. Archelas, R. Furstoss, J. Baratti, Journal of Molecular Catalysis
B: Enzymatic 32 (2005) 175–183.
[31] S. Karboune, A. Archelas, J. Baratti, Enzyme and Microbial Technology 39 (2006)
318–324.
Acknowledgements
The support of this work by the National Basic Research Program of
China (973 Program) (No. 2011CB710806), National Natural Science
Foundation of China (No. 21176224) and the Research Project of
Natural Science Foundation of Zhejiang Province (Nos. Z4080032
and R3110155) is gratefully acknowledged.
[32] Z.Q. Liu, Y. Gosser, P.J. Baker, Y. Ravee, Z.Y. Lu, G. Alemu, H.G. Li, G.L. Butterfoss,
X.P. Kong, R. Gross, J.K. Montclare, Journal of the American Chemical Society 131
(2009) 15711–15716.
[33] M.T. Reetz, M. Bocola, L.W. Wang, J. Sanchis, A. Cronin, M. Arand, J.Y. Zou, A.
Archelas, A.L. Bottalla, A. Naworyta, S.L. Mowbray, Journal of the American Chem-
ical Society 131 (2009) 7334–7343.
[34] L.Y. Rui, L. Cao, W. Chen, K.F. Reardon, T.K. Wood, The Journal of Biological Chem-
istry 279 (2004) 46810–46817.
[35] J.H. Woo, Y.O. Hwang, J.H. Kang, H.S. Lee, S.J. Kim, S.G. Kang, Journal of Bioscience
and Bioengineering 110 (2010) 295–297.
References
[1] Z.Q. Liu, Y. Li, Y.Y. Xu, L.F. Ping, Y.G. Zheng, Applied Microbiology and Biotechnol-
ogy 74 (2007) 99–106.
[2] A. Steinreiber, K. Faber, Current Opinion in Biotechnology 12 (2001) 552–558.
[3] E. Blee, F. Schuber, European Journal of Biochemistry 230 (1995) 229–234.
[4] R.J. Linderman, E.A. Walker, C. Haney, R.M. Roe, Tetrahedron 51 (1995) 10845–10856.
[5] I. Osprian, W. Kroutil, M. Mischitz, K. Faber, Tetrahedron: Asymmetry 8 (1997) 65–71.
[6] C.A.G.M. Weijers, J.A.M. de Bont, Journal of Molecular Catalysis B: Enzymatic 6
(1999) 199–214.
[7] M. Nardini, I.S. Ridder, H.J. Rozeboom, K.H. Kalk, R. Rink, D.B. Janssen, B.W. Dijkstra,
The Journal of Biological Chemistry 274 (1999) 14579–14586.