10.1002/chem.201701704
Chemistry - A European Journal
COMMUNICATION
R1
RhBr3L
Keywords: rhodium • rearrangement • allene • heterocycles •
R1
O
·
N
N
O
R2
R2
R2
N
cascade reaction
R1
O
·
R2
R2
4'
1
4
[3+2]
[1]
a) A. Lledó, A. Pla-Quintana, A. Roglans, Chem. Soc. Rev. 2016, 45,
2010-2023; b) S. Kitagaki, F.Inagaki, C. Mukai, Chem. Soc. Rev. 2014,
43, 2956-2978; c) J. Ye, S. Ma, Org. Chem. Front. 2014, 1, 1210-1224;
d) R. Zimmer, H.-U. Reissig, Chem. Soc. Rev. 2014, 43, 2888-2903; f)
S. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074-3112; e) N.
Krause, A. S. K. Hashmi, Modern Allene Chemistrym Wiley-VCH,
Weinheim, 2004. h) R. Zimmer, C. U. Dinesh, E. Nandanan, F. A.
Khan, Chem. Rev. 2000, 100, 3067-3126.
R1
O
N
R1
R1
N
O
8
HBr
N
O
RhBr2L
·
Br
RhBr2L
[1,3]-nitrogen
rearrangement
R2
R2
O
7
H
N
R1
6
2
[2]
[3]
a) B. M. Trost, W. Brieden, K. H. Baringhaus, Angew. Chem., Int. Ed.
Engl. 1992, 31, 1335–1336; b) I. Kadota, A. Shibuya, Y. S. Gyoung, Y.
Yamamoto, J. Am. Chem. Soc. 1998, 120, 10262–10263; L. M. Lutete,
I. Kadota, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 1622-1623; d)
N. T. Patil, H. Wu, I. Kadota, Y. Yamamoto, J. Org. Chem. 2004, 69,
8745-8750.
Scheme 3. A plausible mechanism
In conclusion, we have successfully developed a new
method to generate allene intermediates by using a RhIII catalyst.
Since the reaction rapidly constructs nitrogenous heterobicyclic
skeletons in a single operation under mild reaction conditions,
the present method is potentially useful for the synthesis of new
classes of heterocyclic compounds, which is beneficial for drug
discovery.[11]
a) A. Lumbroso, P. Koschker, N. R. Vautravers, B. Breit, J. Am. Chem.
Soc. 2011, 133, 2386-2389; b) U. Gellrich, A. Meißner, A. Steffani, M.
Kähny, H.-J. Drexler, D. Heller, D. A. Plattner, B. Breit, J. Am. Chem.
Soc. 2014, 136, 1097-1104; c) P. Koschker, M. Kähny, B. Breit, J. Am.
Chem. Soc. 2015, 137, 3131-3137; d) P. Koschker, B. Breit, Acc. Chem.
Res. 2016, 49, 1524-1536; e) F. A. Cruz, Z. Chen, S. I. Kurtoic, V. M.
Dong, M. Chem. Commun. 2016, 52, 5836-5839.
[4]
[5]
[6]
Rhodium-catalyzed isomerization of internal alkynes, R. Shintani, W.-L.
Duan, S. Park, T. Hayashi, Chem. Commun. 2006, 3646-3647.
T, Liang, K. D. Nguyen, W. Zhang, M. J. Krische, J. Am. Chem. Soc.
2015, 137, 3161-3164.
Experimental Section
a) M. C. Aversa, G. Cum, N. Uccella, J. Chem. Soc., Chem. Commun.
1971, 156-157; b) A. Padwa, Y. Tomioka, M. K. Venkatramanan,
Tetrahedron Lett. 1987, 28, 755-758; c) A. Padwa, M. Matzinger. Y.
Tomioka, M. K. Venkatramanan, J. Org. Chem. 1988, 53, 955-963.
P. Crabbé, H. Fillion, D. André, J.-L. Luche, J. Chem. Soc., Chem.
Commun., 1979, 859-860.
To a mixture of 1f (120.9 mg, 0.4 mmol), RhBr3·2H2O (15.1 mg, 0.04
mmol), and dppp (33.0 mg, 0.08 mmol) was added THF (2.0 mL) under
argon atmosphere and the mixture was stirred at 120 °C for 24 hours.
After cooling to room temperature, the mixture was filtered through a
short pad of silica gel using ethyl acetate. After removing solvents in
vacuo, the crude product was purified by flash silica gel column
chromatography using hexane/ethyl acetate (10/1), affording 2f (78.1 mg,
0.26 mmol) in an analytically pure form.
[7]
[8]
[9]
Z. Wang, Y. Wang, L. Zhang, J. Am. Chem. Soc. 2014, 136, 8887-8890.
Typical π-acidic catalysts, such as [(PPh3)AuNTf2] and PtCl4, did not
promote the present reaction.
[10] Attempts to observe the cycloaddition intermediate 8 was unsuccessful.
Indeed, our preliminary calculations suggested that the product 2a is
38.3 kcalmol-1 more stable than the cycloaddition intermediate 8a.
[11] a) B. S. Bhatti, J.-P. Strachan, S. R. Breining, C. H. Miller, P. Tahiri, P.
A. Crooks, N. Deo, C. S. Day, W. S. Caldwell, J. Org. Chem. 2008, 73,
3497-3507; b) A. Mallick, A. P. J. Pal, Y. D. Vankar, Tetrahedron Lett.
2013, 54, 6549-6552.
Acknowledgements
This work was supported by JSPS KAKENHI Grant Number
JP16H00996 in Precisely Designed Catalysts with Customized
Scaffolding.
This article is protected by copyright. All rights reserved.