3
Associate Program, and SUNBOR SCHOLARSHIP. This
work was also performed with the support of the Russian
Government Program for Competitive Growth granted to
Kazan Federal University.
Hz), 6.63 (dd, 2H, J = 6.8, 2.0 Hz), 6.26 (dd 2H, J = 2.3, 2.3 Hz),
4.21 (brs, NH2); 13C NMR (100 MHz, CDCl3) δ 151.6, 129.2(2C),
126.8, 120.6(2C), 114.1(2C), 113.1(2C); ESI-MS m/z calcd for
C10H10N2O2S
[M+H]+
223.1,
found
223.1.
Notes: All NMR and MS data of anilines 2a-f were in consistent
with those reported earlier.13
References and Notes
1
K. Uchida, M. Kanematsu, Y. Morimitsu, T. Osawa, N. Noguchi,
E. Niki, J. Biol. Chem. 1998, 273, 16058-66.
2
3
K. Uchida, M. Kanematsu, K. Sakai, T. Matsuda, N. Hattori, Y.
Mizuno, D. Suzuki, T. Miyata, N. Noguchi, E. Niki, T. Osawa,
Proc. Natl. Acad. Sci. U S A 1998, 95, 4882-7.
M. Yoshida, K. Higashi, L. Jin, Y. Machi, T. Suzuki, A. Masuda,
N. Dohmae, A. Suganami, Y. Tamura, K. Nishimura, T. Toida, H.
Tomitori, K. Kashiwagi, K. Igarashi, Biochem. Biophys. Res.
Commun. 2010, 391, 1234-9.
4
5
T. N. Tran, M. G. Kosaraju, S. Tamamizu-Kato, O. Akintunde, Y.
Zheng, J. K. Bielicki, K. Pinkerton, K. Uchida, Y. Y. Lee, V.
Narayanaswami, Biochemistry 2014, 53, 361-75.
K. Tanaka, E. Siwu, S. Hirosaki, T. Iwata, R. Matsumoto, Y.
Kitagawa, A. Pradipta, M. Okumura, K. Fukase, Tetrahedron
Letters 2012, 53, 5899-5902.
6
7
8
A. Pradipta, K. Tanaka, Heterocycles 2013, 87, 2001-2014.
A. Tsutsui, K. Tanaka, Org. Biomol. Chem. 2013, 11, 7208-11.
A. Pradipta, A. Tsutsui, A. Ogura, S. Hanashima, Y. Yamaguchi,
A. Kurbangalieva, K. Tanaka, Synlett 2014, 25, 2442-2446.
A. Tsutsui, R. Imamaki, S. Kitazume, S. Hanashima, Y.
Yamaguchi, M. Kaneda, S. Oishi, N. Fujii, A. Kurbangalieva, N.
Taniguchi, K. Tanaka, Org. Biomol. Chem. 2014, 12, 5151-7.
A. Tsutsui, T. Zako, T. Bu, Y. Yamaguchi, M. Maeda, K. Tanaka,
Adv. Sci. 2016, 3, 1600082.
M. Takamatsu, K. Fukase, A. Kurbangalieva, K. Tanaka, Bioorg.
Med. Chem. 2014, 22, 6380-6.
A. Tsutsui, A. Pradipta, E. Saigitbatalova, A. Kurbangalieva, K.
Tanaka, MedChemComm 2015, 6, 431-436.
9
10
11
12
13
a) M. Takamatsu, K. Fukase, R. Oka, S. Kitazume, N. Taniguchi,
K. Tanaka, Sci. Rep. 2016, 6, 35872. b) We proposed the
hydrogen transfer mechanism based on the similar nitroarene
reduction by organic molecule (see ref. 18), but one electron
reduction mechanism cannot be ruled out.
14
J. M. Aizpurua, C. Palomo, R. M. Fratila, P. Ferrón, A. Benito, E.
Gómez-Bengoa, J. I. Miranda, J. I. Santos, J. Org. Chem. 2009,
74, 6691-702.
15
16
M. Coellen, C. Ruchardt, Chem. Eur. J. 1995, 1, 564-567.
A. G. A. Maslov, K. V. Egorov, T. I. Kaminski, Chemistry of
Heterocyclic Compounds, 2002, 38, 560-563.
17
18
D. Giomi, R. Alfini, A. Brandi, Tetrahedron 2011, 67, 167-172.
S. Sharma, M. Kumar, V. Kumar, N. Kumar, J. Org. Chem. 2014,
79, 9433-9.
19
20
L. Fuentes, U. Osorio, L. Quintero, H. Höpfl, N. Vázquez-Cabrera
F. Sartillo-Piscil, J. Org. Chem. 2012, 77, 5515-24.
We could not observe imine formation between the oxidized
adduct of FDP and aromatic amine as reaction product under the
reaction conditions. The low reactivity of nitroarenes with
electron-donating groups is not due to such imine formation, but
due to lower reduction potential of nitroarenes. We have
examined this effects in details in our previous report.13
A general procedure for gram-scale reduction of nitroarenes.
To a solution of n-propylamine (2.7 mL, 35 mmol) in DMF (5.0
mL) was added acrolein (2.3 mL, 35 mmol), nitroarene 1a (1.7 g,
7.0 mmol) and CaCl2 (6.4 g, 34 mmol) at room temperature.
After 10 minutes, the solution was heated to 100 ºC and the
21
resulting mixture was stirred for
5 h. The mixture was
concentrated in vacuo to give a crude mixture as sticky gum.
After filtration, the crude residue was purified by
chromatography on silica gel (hexane:EtOAc = 2:1) to give the
aniline product 2a (1.3 g, 84% yield): 1H NMR (400 MHz,
CDCl3) δ 7.63 (dd, 2H, J = 6.8, 2.0 Hz), 7.13 (dd, 2H, J = 2.3, 2.3