Page 3 of 3
Journal Name
ChemComm
COMMUNICATION
DOI: 10.1039/C5CC01685A
Notes and references
a
Central Salt and Marine Chemicals Research Institute (CSIRꢀCSMCRI)
and CSMCRIꢀ Academy of Scientific and Innovative Research, G. B.
Marg, Bhavnagarꢀ364002, Gujarat, India. Eꢀmail: abpanda@csmcri.org
Acknowledgement: CSIRꢀCSMCRI Communication No. 26/2014. The
Authors would like to acknowledge DST, India (SR/S1/ICꢀ33/2011) for
financial support. The authors also acknowledge the “ADCIF” of
CSMCRI for providing instrumentation facilities.
Electronic Supplementary Information (ESI) available: [detailed
experimental
procedure,
additional
TEM,
catalytic
results,
electrochemical data]. See DOI: 10.1039/c000000x/
1
2
3
4
a) I. Sorribes, G. Wienhofer, C. Vicent, K. Junge, R. Llusar and M.
Beller, Angew. Chem., 2012, 124, 7914; b) K. Imamura, K.
Hashimoto and H. Kominami, Chem. Commun., 2012, 48, 4356; c)
D. Cantillo, M. Baghbanzadeh, and C. O. Kappe, Angew. Chem. Int.
Ed. 2012, 51, 10190.
Fig. 2
Upper left panel: Successive UVꢀvis spectra during reduction of
para nitrophenol; upper right panel: A Probable proposed photocataltstic
pathway for reduction of nitroarenes over synthesized CdS flower; lower left
panel: photocatalytic reduction of aromatic nitro compounds; lower right
panel: photocatalytic oxidation of saturated sp3 CꢀH bonds.
a) X. Chen, K. M. Engle, D.ꢀH. Wang and J.ꢀQ. Yu, Angew. Chem.
Int. Ed. 2009, 48, 5094; b) A. Sinhamahapatra, N. Sutradhar, S. K.
Pahari, P. Pal, H C. Bajaj, M. Jayachandran, and A. B. Panda,
ChemCatChem, 2011,
3, 1447; c) J. A. Labinger and J. E. Bercaw,
moderate to good conversion to corresponding oxidized product
aldehyde or ketone with 100 % selectivity (Fig. 2, right lower panel).
It is active towards primary CꢀH bond of toluene as well as
secondary CꢀH bond of cyclohexene, ethylbenzene and
diphenylmethane (Probable oxidation mechanism, Fig.S10, see
ESI†).
The controlled experiments, for visible light induced
photocatalytic reduction of pꢀnitrophenol using CdS bulk,
agglomerated CdS nanoparticles (unꢀstabilized), and monodispersed
spherical CdS particles (5 nm) under identical condition, confirmed
that the activity of the synthesized CdS flower is much superior (Fig.
S11, see ESI†). Further, the obtained results for the reduction of pꢀ
nitrophenol using synthesized CdS flower under simple house hold
Nature, 2002, 417, 507.
a) X. H. Li, J. S. Chen, X. Wang, J. Sun, and M. Antonietti, J. Am.
Chem. Soc. 2011, 133, 8074; b) L. Kesavan, R. Tiruvalam, M. H.
Rahim, M. I. Saiman, D. I. Enache, R. L. Jenkins, N.
Dimitratos, J. A. L.ꢀSanchez, S. H. Taylor, D. W. Knight, C. J.
Kiely and G. J. Hutchings, Science 2011, 331, 195.
(a) Y. Hu, X. Gao, L. Yu, Y. Wang, J. Ning, S. Xu and X. W. Lou,
Angew. Chem., Int. Ed., 2013, 52, 5636; b) W. Wu, G. Liu, Q. Xie, S.
Liang, H. Zheng, R. Yuan, W. Su and L. Wu, Green Chem., 2012,
14, 1705; c) Y. Kim, H.ꢀB. Kim and D.ꢀJ. Jang, J. Mater. Chem. A
,
2
014, , 5791; d) C. Li, L. Han, R. Liu, H. Li, S. Zhang and G.
2
4
0W CFL lamp is comparable or sometime better with respect to the
Zhang, J. Mater. Chem., 2012, 22, 23815; e) N. Bao, L. Shen, T.
Takata and K. Domen, Chem. Mater. 2008, 20, 110.
literature reported pure CdS and CdS modified with costly graphene
under undesirable 300 W Xe lamp (Table S1). The superior
photocatalytic activity of the synthesized CdS flower is most
probably due to the highest quantum confinement (Fig. S12, see
ESI†) which exhibit higher rate of interfacial charge transfer, large
surface area (Fig. S13, see ESI†) and long range of lattice periodicity
in sheets that provides a better channel for electron transportation.
Whereas, under identical condition in absence of CdS, i.e., catalyst,
and presence of hydrazene the conversion of pꢀnitrophenol was
negligible and confirmed that the reaction is strictly photocatalytic
5
6
a) M. Q. Yang, Y. Zhang, N. Zhang, Z.ꢀR. Tamg and Y. J. Xu, Sci.
Reports, 2013, 3, 3314; b) S. Liu, Z. Chen, N. Zhang, Z.ꢀR. Tamg
and Y. J. Xu, J. Phys. Chem. C, 2013, 117, 8251;
a) N. Zhang, S. Liu, X. Fu and Y.ꢀJ. Xu, J. Mater. Chem., 2012, 22
,
5
042; b) T. P. A. Ruberu, N. C. Nelson, I. I. Slowing, and J. Vela, J.
Phys. Chem. Lett. 2012, 3, 2798; c) H. Yan, J. Yang, G. Ma, G. Wu,
X. Zong, Z. Lei, J. Shi and C. Li, J. Catal., 2009, 266, 165.
(Fig. S14, see ESI†).
7
a) Y. Xu, W. Zhao, R. Xu, Y. Shi and B. Zhang, Chem. Commun.,
In summary, we have developed a simple synthetic protocol for
2
013, 49, 9803; b) Y. Zhang, N. Zhang, Z.ꢀR. Tamg and Y. J. Xu,
Chem. Sci., 2012, , 2812.
(a) J. Yang, D. Wang, H. Han and C. Li, Acc. Chem. Res., 2013, 46
900; (b) A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
ultrathin (0.8 nm) sheet mediated uniform CdS flowers and use
water as solvent make the procedure advantageous and greener.
During synthesis, water took a crucial role in short range spherical
assembly 1nm CdS dots and the dots were transformed to sheets in
the spherical assembly through oriented attachment. The synthesized
CdS flowers showed excellent visible light driven photocatalytic
activity for selective reduction of nitroarines to corresponding amino
compounds under simple house hold 40W CFL lamp. The CdS
3
8
9
,
1
(a) S. Acharya, M. Dutta, S. Sarkar, D. Basak, S. Chakraborty, and N.
Pradhan, Chem. Mater., 2012, 24, 1779; (b) L. Yi, M. Gao, Cryst.
Growth Des., 2011, 11, 1109; (c) T. Yu, B. Lim, Y. Xia, Angew.
Chem. Int. ed. 2010, 49, 4484; (d) C. Schliehe, B. H. Juarez, M.
Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster,
A. Kornowski, C. Klinke, H. Weller, Science, 2010, 329 , 550..
3
flower also active for oxidation of saturated sp CꢀH bonds in
molecular oxygen as oxidant. The photocatalytic activity is
comparable or sometime better with respect to the literature reported
pure CdS and CdS modified with costly graphene under hazardous 10 S. K. Pahari, A. Sinhamahapatra, N. Sutradhar, H. C Bajaj and A. B.
3
00 W Xe lamp. Finally, the catalyst can be utilize for other
Panda, Chem. Commun., 2012, 48, 850.
photocatalytic reactions and may be the potential material for the
fabrication of photovoltaic devices.
1
1 P. W. Tasker, J. Phys. C: Solid State Phys. 1979, 12, 4977.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3