ChemComm
Communication
Table 1 Catalytic activities and selectivities in oxidation of 1-hexene,
The obtained H-TS-1-7.5 catalyst shows a significant enhance-
ment of catalytic activities in oxidation of hexene, hexane, and
benzyl alcohol, compared with the conventional TS-1 catalyst.
This phenomenon is reasonably related to the presence of
hydroxyl groups in the H-TS-1-7.5 catalyst, which efficiently
enrich the concentration of H2O2 in the micropores. Considering
the wide applications of the TS-1 catalyst in industrial processes, a
significant enhancement of catalytic activities by adjusting the
catalyst hydrophilicity would be of great importance for the produc-
tion of fine chemicals in the future. The method in this work would
open a new door for developing more alternative active catalysts,
such as hydrophilic ZSM-5 catalysts (Fig. S13–S16, ESI†).
hexane, and benzyl alcohol over various catalystsa
Conv.
(%)
Selectivity (%)
Othersa
Entry Substrate
Catalyst
1b
2b
3b
4b
5b
6b
7b
1-Hexene
1-Hexene
1-Hexene
1-Hexene
1-Hexene
1-Hexene
1-Hexene
C-TS-1
H-TS-1-5
21.2
32.4
35.0
25.3
12.5
18.7
97.0
98.5
97.8
98.0
99.0
97.9
97.5
3.0
1.5
2.2
2.0
1.0
2.1
2.5
H-TS-1-7.5
H-TS-1-10
H-TS-1-20
C-TS-1-poisonedc
H-TS-1-7.5-poisonedc 33.3
This work was supported by the National Natural Science
Foundation of China (21273197, and U1162201), the National
High-Tech Research and Development program of China
(2013AA065301), and Fundamental Research Funds for the
Central Universities (2013XZZX001).
8d
9d
Hexane
Hexane
C-TS-1
16.0
23.8
27.9
16.1
2.0
66.0
74.2
72.6
71.0
85.0
34.0
25.8
27.4
29.0
15.0
H-TS-1-5
H-TS-1-7.5
H-TS-1-10
H-TS-1-20
10d Hexane
11d Hexane
12d Hexane
Notes and references
1 (a) G. Bellussi and M. S. Gigutto, Stud. Surf. Sci. Catal., 2001,
137, 911; (b) T. Tatsumi, M. Nakamura, S. Negishi and
H. Tominaga, Chem. Commun., 1990, 476.
13e Benzyl alcohol C-TS-1
17.6 >99.0
35.5 >99.0
14e Benzyl alcohol H-TS-1-7.5
a
b
The C6 alcohols, ketones, and some others. Reaction conditions:
2 (a) D. R. C. Huybrechts, L. De Bruycker and P. A. Jacobs, Nature,
1990, 345, 240; (b) A. Corma, J. Catal., 2003, 216, 298; (c) F. T. Fan,
Z. C. Feng and C. Li, Chem. Soc. Rev., 2010, 39, 4794.
3 (a) Q. Guo, K. J. Sun, Z. C. Feng, G. N. Li, M. L. Guo, F. T. Fan and
C. Li, Chem.–Eur. J., 2012, 18, 13854; (b) L.-H. Chen, X.-Y. Li, G. Tian,
Y. Li, J. C. Rooke, G.-S. Zhu, S.-L. Qiu, X.-Y. Yang and B.-L. Su, Angew.
Chem., Int. Ed., 2011, 50, 11156.
60 1C, 4 h, 0.05 g of catalyst, 10 mL of methanol, 10 mmol of 1-hexene,
c
10 mmol of H2O2. 1 mmol of 2,4-dimethylquinoline into the reaction
d
mixture. Reaction conditions: 60 1C, 4 h, 0.1 g of catalyst, 10 mL of
e
methanol, 10 mmol of cyclohexane, 20 mmol of H2O2. Reaction
conditions: 80 1C, 4 h, 0.05 g of catalyst, 3 mL of water, 5 mmol of
phenyl alcohol, 10 mmol of H2O2.
4 (a) W. B. Fan, R.-G. Duan, T. Yokoi, P. Wu, Y. Kubota and
T. Tatsumi, J. Am. Chem. Soc., 2008, 130, 10150; (b) A. Corma,
J. L. Jorda, M. T. Navarro and F. Rey, Chem. Commun., 1998, 1899;
(c) T. Tatsumi, K. A. Koyano and N. Igarashi, Chem. Commun., 1998,
2211; (d) J. Jarupatrakorn and T. D. Tilley, J. Am. Chem. Soc., 2002,
124, 8380; (e) A. Bhaumil, P. Mukherjee and R. Kumar, J. Catal.,
1998, 178, 101; ( f ) A. Bhaumik and T. Tatsumi, Chem. Commun.,
1998, 463.
5 (a) J. Zhuang, G. Yang, D. Ma, X. Lan, X. Liu, X. Han, X.-H. Bao and
U. Mueller, Angew. Chem., Int. Ed., 2004, 43, 6377; (b) M. G.
Clerici and P. Ingallina, J. Catal., 1993, 140, 71; (c) S. Bordiga,
A. Damin, F. Bonino, G. Ricchiardi, C. Lamberti and A. Zecchina,
Angew. Chem., Int. Ed., 2002, 41, 4734; (d) B. Notari, Adv. Catal., 1996,
41, 253.
6 (a) F.-S. Xiao, B. Xie, H. Y. Zhang, L. Wang, X. J. Meng, W. P. Zhang,
X. H. Bao, B. Yilmaz, U. Muller, H. Gies, H. Imai, T. Tatsumi and
D. De Vos, ChemCatChem, 2011, 3, 1442; (b) A. Corma, P. Esteve and
A. Martinez, J. Catal., 1996, 161, 11.
7 (a) W. Fan, P. Wu and T. Tatsumi, J. Catal., 2008, 256, 62; (b) K. Na,
C. Jo, J. Kim, W.-S. Ahn and R. Ryoo, ACS Catal., 2011, 1, 901;
(c) L. Xu, H. Peng, K. Zhang, H. Wu, L. Chen, Y. Liu and P. Wu, ACS
Catal., 2013, 3, 103.
8 Y. Han, D. Li, L. Zhao, J. Song, N. Li, Y. Di, C. Li, S. Wu, X. Xu,
X. Meng, K. Lin and F.-S. Xiao, Angew. Chem., Int. Ed., 2003, 42, 3633.
9 Z. J. Chen, Z. H. Guan, M. R. Li, Q. H. Yang and C. Li, Angew. Chem.,
Int. Ed., 2011, 50, 4913.
10 F. Liu, L. Wang, Q. Sun, L. Zhu, X. Meng and F.-S. Xiao, J. Am. Chem.
Soc., 2012, 134, 16948.
11 (a) J. Wang, L. Xu, K. Zhang, H. Peng, H. Wu, J.-G. Jiang, Y. Liu and
P. Wu, J. Catal., 2012, 288, 16; (b) X. Zhang, D. Liu, D. Xu, S. Asahina,
K. A. Cychosz, K. V. Agrawal, Y. Al Wahedi, A. Bhan, S. Al Hashimi,
O. Terasaki, M. Thommes and M. Tsapatsis, Science, 2012,
336, 1684; (c) Y. J. Lee, J. H. Kim, S. H. Kim, S. B. Hong and
G. Seo, Appl. Catal., B, 2008, 83, 160.
This feature might be related to that the presence of rich
hydroxyl groups on H-TS-1-x catalysts is favorable for the adsorp-
tion of 2- and 3-hexanol, re-oxidizing to 2- and 3-hexanone
products. Similar to the phenomenon observed in the oxidation
of 1-hexene, the H-TS-1-20 catalyst exhibits very low activity in
the oxidation of n-hexane (conversion at 2.0%, entry 12, TON of
6.8, Fig. S10, ESI†), which might also be related to the bulky
crystal size of H-TS-1-20. In the oxidation of benzyl alcohol, the
H-TS-1-7.5 catalyst exhibits much higher conversion (35.5%,
entries 14) than C-TS-1 (17.0%, entry 13). These results suggest
wide applications of the H-TS-1-x catalysts in a series of catalytic
oxidation with H2O2 in the future.
Fig. S11 (ESI†) shows a dependence of catalytic data in 1-hexene
conversion and 1,2-epoxyhexene selectivity on reaction time over
the H-TS-1-7.5 catalyst in a fixed-bed reactor. Very importantly,
the H-TS-1-7.5 catalyst always retains much higher 1-hexene
conversion than the C-TS-1 catalyst for a long time (100 h).
These results confirm that the H-TS-1-7.5 catalyst has stable high
activity, which offers a good opportunity for potential industrial
applications of the highly active H-TS-1-7.5 catalyst in the future
(Fig. S12, ESI†).
In summary, the TS-1 zeolite with rich hydroxyl groups
(H-TS-1-x) was rationally designed and successfully synthesized
by introducing methyl groups into the zeolite framework, followed
by calcination to transform methyl groups to hydroxyl groups.
2014 | Chem. Commun., 2014, 50, 2012--2014
This journal is ©The Royal Society of Chemistry 2014