References
1
2
3
4
5
6
7
8
9
R. D. Cortright, M. Sanchez-Castillo and J. A. Dumesic, Appl. Catal.,
B, 2002, 39, 353–359.
G. Luo, S. Yan, M. Qiao, J. Zhuang and K. Fan, Appl. Catal., A,
2
004, 275, 95–102.
J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel and
C. Rosier, Green Chem., 2004, 6, 359–361.
M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi and C. D. Pina,
Angew. Chem., Int. Ed., 2007, 46, 4434–4440.
C. H. Zhou, J. N. Beltramini, Y. X. Fan and G. Q. Lu, Chem. Soc.
Rev., 2008, 37, 527–549.
A. Behr, J. Eilting, K. Irawadi, J. Leschinski and F. Lindner, Green
Chem., 2008, 10, 13–30.
I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori and K.
Tomishige, Green Chem., 2007, 9, 582–588.
2 3
Fig. 13 Glycerol conversions on CuAg/Al O (2.7)(7 : 3) and copper
chromite at different reaction time.
J. Feng, H. Fu, J. Wang, R. Li and H. Chen, Catal. Commun., 2008,
9
, 1458–1464.
attribute the low activity of the copper chromite mainly to its
relatively low Cu dispersion. The propanediol selectivity of the
copper chromite catalyst is about 80%, not as good as that of
T. Miyazawa, S. Koso, K. Kunimori and K. Tomishige, Appl. Catal.,
A, 2007, 318, 244–251.
1
1
0 T. Miyazawa, S. Koso, K. Kunimori and K. Tomishige, Appl. Catal.,
A, 2007, 329, 30–35.
CuAg/Al
2
3
O (2.7)(7 : 3) either, which was above 95% consistently
1 M. Balaraju, V. Rekha, P. S. Sai Prasad, B. L. A. Prabhavathi
Devi, R. B. N. Prasad and N. Lingaiah, Appl. Catal., A, 2009, 354,
82–87.
through out the reaction. The reaction rate on the CuAg/Al
2
O
3
showed little change during the first 10 h but seemed to decrease
gradually after that. Detailed study about deactivation is under
way.
1
2 A. Alhanash, E. F. Kozhevnikova and I. V. Kozhevnikov, Catal. Lett.,
2
008, 120, 307–311.
1
1
1
3 L. Ma, D. He and Z. Li, Catal. Commun., 2008, 9, 2489–2495.
4 S. Wang and H. C. Liu, Catal. Lett., 2007, 117, 62–67.
5 M. A. Dasari, P. P. Kiatsimkul, W. R. Sutterlin and G. J. Suppes,
Appl. Catal., A, 2005, 281, 225–231.
4
. Conclusions
1
6 A. Perosa and P. Tundo, Ind. Eng. Chem. Res., 2005, 44, 8535–8537.
A g-Al
2
O
3
supported CuAg bimetallic catalyst can be used di-
17 A. Yin, X. Guo, W. Dai and K. Fan, Green Chem., 2009, 11, 1514–
1
516.
rectly without a reduction pretreatment for glycerol hydrogenol-
ysis to propanediols; it showed good performance under mild re-
action conditions. The TPR and XPS characterizations revealed
that the ease of the reduction of CuO on the supported bimetallic
catalysts correlated well with the catalytic activity. The formation
1
1
2
2
8 M. Balaraju, V. Rekha, P. S. Sai Prasad, R. B. N. Prasad and N.
Lingaiah, Catal. Lett., 2008, 126, 119–124.
9 L. Guo, J. Zhou, J. Mao, X. Guo and S. Zhang, Appl. Catal., A, 2009,
367, 93–98.
0 R. T. Yang, Adsorbents: Fundamentals and Applications, Wiley, New
York, 2003, p. 194.
0
+
of low valence Cu species (Cu or Cu ) is the key for high
activity. The addition of Ag to the Cu-based catalyst facilitated
the reduction of the Cu species that generates low valence Cu
species in situ under mild reaction conditions. XRD and XPS
results showed that Ag could also improve the dispersion of the
Cu species. The effects of Ag were not only dependent on the
impregnation order of Cu and Ag, but also on the calcination
temperature after the impregnation. When optimal amounts of
Cu and Ag (Cu/Ag molar ratio 7 : 3, 2.7 mmol Cu+Ag per
1 J. Zhou, Y. Zhang, X. Guo, A. Zhang and X. Fei, Ind. Eng. Chem.
Res., 2006, 45, 6236–6242.
22 D. G. Lahr and B. H. Shanks, J. Catal., 2005, 232, 386–394.
2
2
3 M. Luo, X. Yuan and X. Zheng, Appl. Catal., A, 1998, 175, 121–129.
4 T. Inui, H. Hara, T. Takeguchi and J. Kim, Catal. Today, 1997, 36,
5–32.
25 X. Huang, L. Ma and M. S. Wainwright, Appl. Catal., A, 2004, 257,
35–243.
2
2
2
2
6 R. Morrish and A. J. Muscat, Chem. Mater., 2009, 21, 3865–3870.
7 J. Batista, A. Pintar, D. Mandrino, M. Jenko and V. Martin, Appl.
Catal., A, 2001, 206, 113–124.
gram of g-Al
2
O
3
) were loaded simultaneously on the support
28 F. Xiao, H. Liu and Y. Lee, Bull. Korean Chem. Soc., 2008, 29(12),
◦
2368–2372.
and calcined at 400 C, a catalytic selectivity to propanediols
2
9 J. F. Weaver and G. B. J. Hoflund, J. Phys. Chem., 1994, 98, 8519–
of nearly 100% with a glycerol conversion of about 27% was
8
524.
◦
achieved at 200 C (1.5 MPa initial H
2
pressure, 10 h, M : G =
30 G. I. N. Waterhouse, G. A. Bowmaker and J. B. Metson, Phys. Chem.
Chem. Phys., 2001, 3, 3838–3845.
3
: 100) due to successfully suppressing the scission of the C–C
3
3
3
1 K. A. Bethke and H. H. Kung, J. Catal., 1997, 172, 93–102.
2 P. W. Park and C. L. Boyer, Appl. Catal., B, 2005, 59, 27–34.
3 R. Bul a´ nek, B. Wichterlov a´ , Z. Sobal’ık and J. Tich y´ , Appl. Catal.,
B, 2001, 31, 13–25.
4 S. Jong and S. Cheng, Appl. Catal., A, 1995, 126, 51–66.
5 A. Jones and B. D. McNicol, Temperature Programmed Reduction
for Solid Materials Characterization, in Chemical Industries, Vol. 24,
Marcel Dekker, New York, 1986, p. 30.
6 E. Yoda and A. Ootawa, Appl. Catal., A, 2009, 360, 66–70.
7 C. E. Volckmar, M. Brona, U. Bentrup, A. Martin and P. Claus, J.
Catal., 2009, 261, 1–8.
8 Y. Wei, H. Wang, Y. Yang and J. Lee, J. Phys.: Condens. Matter, 2004,
16, S3485–S3490.
9 P. H. Bolt, F. H. P. M. Habraken and J. W. Geus, J. Solid State Chem.,
bonds in glycerol, which often occurs on supported precious
metal catalysts. Compared with a commonly used commercial
copper chromite catalyst, the CuAg/Al
2
3
O catalyst had much
3
3
higher activity and did not need a reduction pretreatment.
Acknowledgements
3
3
The authors thank the Educational Department of Liaoning
Province, China for its financial support of this work (Grant#
L2010036). The authors also thank the State Key Laboratory
of Fine Chemicals at Dalian University of Technology for sup-
porting the catalyst characterization work (Grant# KF0703).
We would also like to acknowledge Prof. R. Prins (ETH) for
helpful discussion.
3
3
4
1
998, 135, 59–69.
0 L. M. Plyasova, T. M. Yur’eva, I. Y. Molina, T. A. Kriger, A. M.
Balagurov, L. P. Davydova, V. I. Zaikovskii, G. N. Kustova, V. V.
Malakhov and L. S. Dovlitova, Kinet. Catal., 2000, 41, 429–436.
This journal is © The Royal Society of Chemistry 2010
Green Chem., 2010, 12, 1835–1843 | 1843