Journal of the American Chemical Society
Page 6 of 8
(19) Li, X.; Kim, C.-Y.; Lee, S.; Lee, D.; Chung, H.-M.; Kim, G.;
Generation via Fluvastatin-Stimulated Upregulation. J. Am. Chem.
Heo, S.-H.; Kim, C.; Hong, K.-S.; Yoon, J. Nanostructured
Phthalocyanine Assemblies with Protein-Driven Switchable
Photoactivities for Biophotonic Imaging and Therapy. J. Am. Chem.
Soc. 2017, 139, 10880.
Soc. 2015, 137, 8490.
1
2
3
4
5
6
7
8
(37) Chen, W.; Pacheco, A.; Takano, Y.; Day, J. J.; Hanaoka, K.;
Xian, M. A Single Fluorescent Probe to Visualize Hydrogen Sulfide
and Hydrogen Polysulfides with Different Fluorescence Signals.
Angew .Chem. Int. Ed. 2016, 55,9993.
(38) Lippert, A. R.; New, E. J.; Chang, C. J. Reaction-Based
Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in
Living Cells. J. Am. Chem. Soc. 2011, 133, 10078.
(39) Henthorn, H. A.; Pluth, M. D. Mechanistic Insights into the
H2S-Mediated Reduction of Aryl Azides Commonly Used in H2S
Detection. J. Am. Chem. Soc. 2015, 137, 15330.
(40) Xu, G.; Guo, W.; Gu, X.; Wang, Z.; Wang, R.; Zhu, T.; Tian,
H.; Zhao, C. Hydrogen Sulfide-Specific and NIR-Light-Controllable
Synergistic Activation of Fluorescent Theranostic Prodrugs for
Imaging-Guided Chemo-Photothermal Cancer Therapy. CCS Chem.
2020, 2, 527.
(41) Sasakura, K.; Hanaoka, K.; Shibuya, N.; Mikami, Y.; Kimura,
Y.; Komatsu, T.; Ueno, T.; Terai, T.; Kimura, H.; Nagano, T.
Development of a Highly Selective Fluorescence Probe for Hydrogen
Sulfide. J. Am. Chem. Soc. 2011, 133, 18003.
(42) Shi, B.; Gu, X.; Fei, Q.; Zhao, C. Photoacoustic probes for
real-time tracking of endogenous H2S in living mice. Chem. Sci. 2017,
8, 2150.
(43) Wang, F.; Xu, G.; Gu, X.; Wang, Z.; Wang, Z.; Shi, B.; Lu, C.;
Gong, X.; Zhao, C. Realizing highly chemoselective detection of H2S
in vitro and in vivo with fluorescent probes inside core-shell silica
nanoparticles. Biomaterials 2018, 159, 82.
(44) Xu, G.; Yan, Q.; Lv, X.; Zhu, Y.; Xin, K.; Shi, B.; Wang, R.;
Chen, J.; Gao, W.; Shi, P.; Fan, C.; Zhao, C.; Tian, H. Imaging of
Colorectal Cancers Using Activatable Nanoprobes with Second Near-
Infrared Window Emission. Angew. Chem. Int. Ed. 2018, 57, 3626.
(45) Wang, R.; Dong, K.; Xu, G.; Shi, B.; Zhu, T.; Shi, P.; Guo, Z.;
Zhu, W.-H.; Zhao, C. Activatable near-infrared emission-guided on-
demand administration of photodynamic anticancer therapy with a
theranostic nanoprobe. Chem. Sci. 2019, 10, 2785.
(46) Shi, B.; Gu, X.; Wang, Z.; Xu, G.; Fei, Q.; Tang, J.; Zhao, C.
Fine Regulation of Porous Architectures of Core–Shell Silica
Nanocomposites Offers Robust Nanoprobes with Accelerated
Responsiveness. ACS Appl. Mater. Interfaces 2017, 9, 35588.
(47) Zhao, C. C.; Zhang, J. X.; Wang, X. Z.; Zhang, Y. F. Pyridone
fused boron-dipyrromethenes: synthesis and properties. Org. Biomol.
Chem. 2013, 11, 372.
(48) Ye, D.; Shuhendler, A. J.; Cui, L.; Tong, L.; Tee, S. S.;
Tikhomirov, G.; Felsher, D. W.; Rao, J. Bioorthogonal cyclization-
mediated in situ self-assembly of small-molecule probes for imaging
caspase activity in vivo. Nat. Chem. 2014, 6, 519.
(49) Zhou, L.; Lv, F.; Liu, L.; Wang, S. In Situ-Induced
Multivalent Anticancer Drug Clusters in Cancer Cells for Enhancing
Drug Efficacy. CCS Chem. 2019, 1, 97.
(50) Wu, Z.; Liang, D.; Tang, X. Visualizing Hydrogen Sulfide in
Mitochondria and Lysosome of Living Cells and in Tumors of Living
Mice with Positively Charged Fluorescent Chemosensors. Anal. Chem.
2016, 88, 9213.
(51) Tian, H.; Qian, J.; Bai, H.; Sun, Q.; Zhang, L.; Zhang, W.
Micelle-induced multiple performance improvement of fluorescent
probes for H2S detection. Anal. Chim. Acta 2013, 768, 136.
(52) Uchiyama, S.; Iwai, K.; de Silva, A. P. Multiplexing Sensory
Molecules Map Protons Near Micellar Membranes. Angew. Chem. Int.
Ed. 2008, 47, 4667.
(53) Huang, J.; Li, J.; Lyu, Y.; Miao, Q.; Pu, K. Molecular optical
imaging probes for early diagnosis of drug-induced acute kidney
injury. Nat. Mater. 2019, 18, 1133.
(54) Cheng, P.; Miao, Q.; Li, J.; Huang, J.; Xie, C.; Pu, K.
Unimolecular Chemo-fluoro-luminescent Reporter for Crosstalk-Free
Duplex Imaging of Hepatotoxicity. J. Am. Chem. Soc. 2019, 141,
10581.
(55) Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.;
Jokerst, J. V.; Pu, K. Molecular afterglow imaging with bright,
biodegradable polymer nanoparticles. Nat. Biotech. 2017, 35, 1102.
(20) Dong, Z.; Feng, L.; Hao, Y.; Chen, M.; Gao, M.; Chao, Y.;
Zhao, H.; Zhu, W.; Liu, J.; Liang, C.; Zhang, Q.; Liu, Z. Synthesis of
Hollow Biomineralized CaCO3-Polydopamine Nanoparticles for
Multimodal Imaging-Guided Cancer Photodynamic Therapy with
Reduced Skin Photosensitivity. J. Am. Chem. Soc., 2018, 140, 2165.
(21) Yuan, Y.; Zhang, C.-J.; Gao, M.; Zhang, R.; Tang, B. Z.; Liu,
B. Specific Light-Up Bioprobe with Aggregation-Induced Emission
and Activatable Photoactivity for the Targeted and Image-Guided
Photodynamic Ablation of Cancer Cells. Angew. Chem. Int. Ed. 2015,
54, 1780.
(22) Niu, L.-Y.; Chen, Y.-Z.; Zheng, H.-R.; Wu, L.-Z.; Tung, C.-H.;
Yang, Q.-Z. Design strategies of fluorescent probes for selective
detection among biothiols. Chem. Soc. Rev. 2015, 44, 6143.
(23) Li, X.; Lee, D.; Huang, J.-D.; Yoon, J. Phthalocyanine-
Assembled Nanodots as Photosensitizers for Highly Efficient TypeꢀI
Photoreactions in Photodynamic Therapy. Angew. Chem. Int. Ed.
2018, 57, 9885.
(24) Zhen, X.; Zhang, J.; Huang, J.; Xie, C.; Miao, Q.; Pu, K.
Macrotheranostic Probe with Disease-Activated Near-Infrared
Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-
Guided Therapy. Angew. Chem. Int. Ed. 2018, 57, 7804.
(25) Peng, H.-Q.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.;
Yang, Q.-Z. Biological Applications of Supramolecular Assemblies
Designed for Excitation Energy Transfer. Chem. Rev. 2015, 115, 7502.
(26) Feng, L.; Betzer, O.; Tao, D.; Sadan, T.; Popovtzer, R.; Liu, Z.
Oxygen Nanoshuttles for Tumor Oxygenation and Enhanced Cancer
Treatment. CCS Chem. 2019, 1, 239.
(27) Ma, Y.; Li, X.; Li, A.; Yang, P.; Zhang, C.; Tang, B. H2S-
Activable MOF Nanoparticle Photosensitizer for Effective
Photodynamic Therapy against Cancer with Controllable Singlet-
Oxygen Release. Angew. Chem. Int. Ed. 2017, 56, 13752.
(28) Zhang, K.; Zhang, J.; Xi, Z.; Li, L.-Y.; Gu, X.; Zhang, Q.-Z.;
Yi, L. A new H2S-specific near-infrared fluorescence-enhanced probe
that can visualize the H2S level in colorectal cancer cells in mice.
Chem. Sci. 2017, 8, 2776.
(29) Shi, B.; Yan, Q. L.; Tang, J.; Xin, K.; Zhang, J. C.; Zhu, Y.;
Xu, G.; Wang, R. C.; Chen, J.; Gao, W.; Zhu, T. L.; Shi, J. Y.; Fan, C.
H.; Zhao, C. C.; Tian, H. Hydrogen Sulfide-Activatable Second Near-
Infrared Fluorescent Nanoassemblies for Targeted Photothermal
Cancer Therapy. Nano Lett. 2018, 18, 6411.
(30) Wu, L.; Sun, Y.; Sugimoto, K.; Luo, Z.; Ishigaki, Y.; Pu, K.;
Suzuki, T.; Chen, H.-Y.; Ye, D. Engineering of Electrochromic
Materials as Activatable Probes for Molecular Imaging and
Photodynamic Therapy. J. Am. Chem. Soc. 2018, 140, 16340.
(31) Shi, B.; Ren, N.; Gu, L.; Xu, G.; Wang, R.; Zhu, T.; Zhu, Y.;
Fan, C.; Zhao, C.; Tian, H. Theranostic Nanoplatform with Hydrogen
Sulfide Activatable NIR Responsiveness for Imaging-Guided On-
Demand Drug Release. Angew. Chem. Int. Ed. 2019, 58, 16826.
(32) Szabo, C.; Coletta, C.; Chao, C.; Módis, K.; Szczesny, B.;
Papapetropoulos, A.; Hellmich, M. R. Tumor-derived hydrogen
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
sulfide,
produced
by
cystathionine-β-synthase,
stimulates
bioenergetics, cell proliferation, and angiogenesis in colon cancer.
Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12474.
(33) Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chemical probes
for molecular imaging and detection of hydrogen sulfide and reactive
sulfur species in biological systems. Chem. Soc. Rev. 2015, 44, 4596.
(34) Hartle, M. D.; Pluth, M. D. A practical guide to working with
H2S at the interface of chemistry and biology. Chem. Soc. Rev. 2016,
45, 6108;
(35) Yi, L.; Xi, Z. Thiolysis of NBD-based dyes for colorimetric
and fluorescence detection of H2S and biothiols: design and biological
applications. Org. Biomol. Chem. 2017, 15, 3828.
(36) Zhao, C.; Zhang, X.; Li, K.; Zhu, S.; Guo, Z.; Zhang, L.;
Wang, F.; Fei, Q.; Luo, S.; Shi, P.; Tian, H.; Zhu, W.-H. Förster
Resonance Energy Transfer Switchable Self-Assembled Micellar
Nanoprobe: Ratiometric Fluorescent Trapping of Endogenous H2S
ACS Paragon Plus Environment