Y. Kim et al. / Inorganica Chimica Acta 366 (2011) 337–343
343
[3] O.R. Evans, W. Lin, Acc. Chem. Res. 35 (2002) 511.
[4] A. Erxleben, Coord. Chem. Rev. 246 (2003) 203.
methanol to produce the product methyl ester as shown in
Scheme 4.
[5] S.A. Barnett, N.R. Champness, Coord. Chem. Rev. 246 (2003) 145.
[6] L. Carlucci, G. Ciani, D.M. Proserpio, Coord. Chem. Rev. 246 (2003) 247.
[7] H.W. Roesky, M. Andruh, Coord. Chem. Rev. 236 (2003) 91.
[8] X.J. Luan, Y.-Y. Wang, D.-S. Li, P. Liu, H.-M. Hu, Q.-Z. Shi, S.-M. Peng, Angew.
Chem., Int. Ed. 44 (2005) 3864.
4. Conclusions
Complexes of the general formulation [Zn(bispicam)2]X2
[9] B.-B. Ding, Y.-Q. Weng, Z.-W. Mao, C.-K. Lam, X.-M. Chen, B.-H. Ye, Inorg. Chem.
44 (2005) 8836.
[10] A. Angeloni, P.C. Crawford, A.G. Orpen, T.J. Podesta, B.J. Shore, Chem. Eur. J. 10
(2004) 3783.
[11] V. Balamurugan, M.S. Hundal, R. Mukherjee, Chem. Eur. J. 10 (2004) 1683.
[12] Y. Wang, J. Yu, Y. Li, Z. Shi, R. Xu, Chem. Eur. J. 9 (2003) 5048.
[13] D. Braga, F. Grepioni, G.R. Desiraju, Chem. Rev. 98 (1998) 1375.
[14] C. Janiak, Dalton Trans. (2003) 2781.
[15] L. Carlucci, G. Ciani, D.M. Proserpio, S. Rizzato, Chem. Eur. J. 5 (1999) 237.
[16] H.-P. Wu, C. Janiak, G. Rheinwald, H. Lang, J. Chem. Soc. (1999) 183.
[17] Z. Ni, J. Vittal, Cryst. Growth Des. 1 (2001) 195.
[18] M. Du, X.-H. Bu, Y.-M. Guo, H. Liu, S.R. Batten, J. Ribas, T.C.W. Mak, Inorg. Chem.
41 (2002) 4904.
[19] J.Y. Ryu, J.H. Han, J.Y. Lee, S.J. Hong, S.H. Choi, C. Kim, S.-J. Kim, Y. Kim, Inorg.
Chim. Acta 358 (2005) 3659.
[20] A.J. Blake, N.R. Champness, P. Hubberstey, W.-S. Li, M.A. Withersby, M.
Schröder, Coord. Chem. Rev. 183 (1999) 117.
[21] M.C. Hong, Y.J. Zhao, W.P. Su, R. Cao, M. Fujita, Z.Y. Zhou, A.S.C. Chan, J. Am.
Chem. Soc. 122 (2000) 4819.
(X = Clꢁ [25], Brꢁ, Iꢁ [26], NO3ꢁ, ClO4 [25], and OTfꢁ) have been
ꢁ
obtained, and there were fac geometric isomers (a) or enantiomers
(c) and (d) according to anions. These results indicate that anion ef-
fects play very important roles for construction of crystal struc-
tures and geometrical isomerism. We have also reported that
complexes 4–6, could carry out the catalytic transesterification of
a range of esters with methanol under the mild conditions. Inter-
estingly, the catalyst 4B with an unsaturated structure has shown
better efficiency than the catalysts, 4A, 5, and 6, having saturated
structures. To explain this reactivity difference, two different reac-
tion mechanisms have been proposed (metal-based vs. amide N–H
based). These results may represent an excellent starting point for
the development of new metal complexes that might be efficiently
used as useful catalysts.
[22] J.F. Ma, J.F. Liu, X. Yan, H.Q. Jia, Y.H. Lin, J. Chem. Soc. (2000) 2403.
[23] Y.M. Lee, S.J. Hong, H.J. Kim, S.H. Lee, H. Kwak, C. Kim, S.-J. Kim, Y. Kim, Inrog.
Chem. Commun. 10 (2007) 287.
[24] H. Kwak, S.H. Lee, S.H. Kim, Y.M. Lee, E.Y. Lee, B.K. Park, E.Y. Kim, C. Kim, S.-J.
Kim, Y. Kim, Eur. J. Inorg. Chem. (2008) 408.
Acknowledgements
Financial support from South Korea Ministry Environment
‘‘ET-Human Resource Development Project’’, the Korean Science
Engineering Foundation (R01-2008-000-20704-0 and 2009-
0074066), the Converging Research Center Program through the
National Research Foundation of South Korea (NRF) funded by the
Ministry of Education, Science and Technology (2009-0082832),
and South Korea University Grant is gratefully acknowledged.
[25] J. Glerup, P.A. Goodson, D.J. Hodgson, K. Michelsen, K.M. Nielsen, H. Welbe,
Inorg. Chem. 31 (1992) 4611.
[26] B.K. Park, S.H. Lee, E.Y. Lee, H. Kwak, Y.M. Lee, Y.J. Lee, J.Y. Jun, C. Kim, S.-J. Kim,
Y. Kim, J. Mol. Struct. 890 (2008) 123.
[27] Bruker, SHELXTL/PC, Version 6.12 for Windows XP. 2001, Bruker AXS Inc.,
Madison, Wisconsin, USA.
[28] D. Seebach, E. Hungerbuhler, R. Naef, D. Schnurrenberger, B. Weidmann, M.
Zuger, Synthesis (1982) 138.
[29] M.-H. Lin, T.V. RajanBabu, Org. Lett. 2 (2000) 997.
[30] G.A. Grasa, R.M. Kissling, S.P. Nolan, Org. Lett. 4 (2002) 3583.
[31] G.A. Grasa, T. Guveli, R. Singh, S.P. Nolan, J. Org. Chem. 68 (2003) 2812.
[32] R.L.E. Furlan, E.G. Mata, O.A. Mascaretti, Tetrahedron Lett. 39 (1998) 2257.
[33] C.E. Rehberg, C.H. Fisher, J. Org. Chem. 12 (1947) 226.
[34] Y. Kim, S.-J. Kim, S.H. Choi, J.H. Han, S.H. Nam, J.H. Lee, H.J. Kim, C. Kim, D.W.
Kim, H.G. Jang, Inorg. Chim. Acta 359 (2006) 2534.
[35] J.Y. Kwon, Y. Kim, S.-J. Kim, S.H. Lee, H. Kwak, C. Kim, Inorg. Chim. Acta 361
(2008) 1885.
[36] L. Xu, Y. Kim, S.-J. Kim, H.J. Kim, C. Kim, Inrog. Chem. Commun. 10 (2007) 586.
[37] Y.J. Song, H. Kwak, Y.M. Lee, S.H. Kim, S.H. Lee, B.K. Park, J.Y. Jun, S.M. Yu, C.
Kim, S.-J. Kim, Y. Kim, Polyhedron 28 (2009) 1241.
Appendix A. Supplementary material
CCDC 764846, 764847 and 764848 contain the supplementary
crystallographic data for compounds 4A, 4B and 6, respectively.
These data can be obtained free of charge from The Cambridge
request/cif. Supplementary data associated with this article can
[38] S.H. Kim, B.K. Park, Y.J. Song, S.M. Yu, H.G. Koo, E.Y. Kim, J.I. Poong, J.H. Lee, C.
Kim, S.-J. Kim, Y. Kim, Inorg. Chim. Acta 362 (2009) 4119.
[39] H. Kwak, S.H. Lee, S.H. Kim, Y.M. Lee, B.K. Park, Y.J. Lee, J.Y. Jun, C. Kim, S.-J. Kim,
Y. Kim, Polyhedron 28 (2009) 553.
References
[40] G.W. Nyce, J.A. Lamboy, E.F. Connor, R.M. Waymouth, J.L. Hedrick, Org. Lett. 4
(2002) 3587.
[41] D. Tashiro, Y. Kawasaki, S. Sakaguchi, Y. Ishii, J. Org. Chem. 62 (1997) 8141.
[1] D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Acc. Chem. Res.
34 (2001) 319.
[2] B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629.