SYNTHESIS OF 3,4-DIHYDROXYPHENYLACETALDEHYDE
49
3,4-Dihydroxyphenylacetaldehyde (1)
To a solution of 5 (560 mg, 3.42 mM) in 15 ml of 1,2-dichloroethane was added
3.5 ml of 2 M boron trichloride–methyl sulfide complex solution in dichloromethane.
The reaction mixture was heated under reflux for 24 h and then cooled to room
temperature. Ten milliliters of water was added and the mixture was stirred for
1 h at room temperature. The organic layer was separated and the water layer was
extracted with 1,2-dichloroethane (15 ml ϫ 3). The combined extracts were washed
with water and dried over anhydrous sodium sulfate. Removal of the solvent gave
the crude product which was purified by chromatography on a silica gel using 2%
methanol in dichloromethane as the eluting solvent. The desired fractions were
identified with TLC, pooled, and concentrated to afford 75 mg (14%) of 1: NMR
(DMSO-d6) ͳ 9.67 (t, 1H, CHO), 7.27 (dd, 1H, aromatic), 7.20 (d, 1H, aromatic),
6.90 (d, 1H, aromatic), 3.50 (d, 2H, CH2); mp 110–112ЊC; IR (nujol), 3425 (OH),
1
1690 (CHO) cmϪ ; UV (methanol) max 228 nm ( ϭ 9173), 262 nm ( ϭ 8181);
MS (CI), calcd for C8H8O3: 152.00. Found: 153 (MHϩ). Anal. Calcd for C8H8O3H2O:
C, 56.45%; H, 5.92%. Found: C 56.18%; H, 6.18%.
ACKNOWLEDGMENTS
This work was supported by a grant from the Veterans Affairs Merit Review program. We express
our thanks to Dr. F. A. Bancsach and Dr. Betsy Ann, University of South Alabama, for aid in molecu-
lar masses.
REFERENCES
1. Blaschko, H. (1952) Pharmacol. Rev. 4, 415–453.
2. Duncan, R. J. S., and Sourkes, T. L. (1974) J. Neurochem. 122, 663–669.
3. Mardh, G., and Vallee, B. L. (1986) Biochemistry 25, 7279–7282.
4. Gottfries, C. G. (1985) Psychopharmacology 86, 245–252.
5. Hornykiewicz, O. (1987) in Advances in Neurology: Parkinson’s Disease (Yahr, M. D., and Bergman,
K. J., Eds.), pp. 19–34, Raven Press, New York.
6. Sharman, D. F. (1973) Br. Med. Bull. 20, 110–115.
7. Carlsson, A., and Winblad, B. (1976) J. Neural Transm. 38, 271–276.
8. Warsh, J. J., Godse, D. D., Li, P. P., and Cheung, S. W. (1981) J. Neurochem. 36, 902–907.
9. Ris, M. M., and von Wartburg, J. P. (1973) Eur. J. Biochem. 37, 69–77.
10. Grote, S. S., Moses, S. G., Robins, E., Hudgens, R. W., and Croninger, A. B. (1974) J. Neurochem.
23, 791–802.
11. Duncan, R. J. S., Sourkes, T. L., Dubrovsky, B. O., and Quick, M. (1975) J. Neurochem. 24, 143–147.
12. Marsden, C. A., Broch, O. J., and Guldberg, H. C. (1972) Eur. J. Pharmacol. 19, 35–42.
13. Rutledge, C. O., and Jonason, J. (1967) J. Pharmacol. Exp. Ther. 157, 493–502.
14. Markey, J. P., Johannessen, J. N., Chiveh, C. C., Burns, R. S., and Herkenham, M. A. (1984) Nature
(London) 311, 464–467.
15. Li, S. W., Elliott, W. H., and Burke, W. J. (1994) Bioorg. Chem. 22, 337–343.
16. Burke, W. J., Schmitt, C. A., Li, S. W., Gillespie, K. N., Park, D. H., and Joh, T. H. (1995) Anal.
Biochem. 230, 345–348.
17. Li, S. W., Spaziano, V. T., Elliott, W. H., and Burke, W. J. (1996) Bioorg. Chem. 24, 169–177.
18. Burke, W. J., Schmitt, C. A., Gillespie, K. N., and Li, S. W. (1996) Brain Res. 722, 232–235.