ORGANIC
LETTERS
2
013
Vol. 15, No. 24
152–6154
Silver-Catalyzed Vinylogous Fluorination
of Vinyl Diazoacetates
6
Changming Qin and Huw M. L. Davies*
Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta,
Georgia 30322, United States
Received October 21, 2013
ABSTRACT
A silver-catalyzed vinylogous fluorination of vinyl diazoacetates to generate γ-fluoro-r,β-unsaturated carbonyls is presented. Application of this
method to the fluorination of farnesol and steroid derivatives was achieved.
The development of new methods for achieving selective
1
relevant compounds such as steroids, amino acids and
3
metalloprotease inhibitors. Traditional approaches for
fluorination is a current research area of intense interest.
Organofluorine compounds display broad utility as valu-
ablepharmaceuticals, agrochemicals, materialsand tracers
the synthesis of γ-fluoro-R,β-unsaturated carbonyls
mainly rely on electrophilic fluorination of conjugated
2
4
for positron emission tomography. γ-Fluoro-R,β-unsatu-
rated carbonyls represent a versatile class of intermediates
inorganicsynthesis andareprevalentmotifsinbiologically
enolethers and Wittig-type reaction ofR-fluoro aldehydes
5
6
7
or ketones. Recently, we and others have described that
metal-stabilized vinylcarbenes derived from vinyl diazo-
acetates can selectively display electrophilic reactivity at the
vinylogous position instead of the carbene site. This type of
behavior is especially favorable when silver catalysts are
(
1) For recent leading reviews, see: (a) Liang, T.; Neumann, C.;
Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (b) Liu, G. Org. Biomol.
Chem. 2012, 10, 6243. (c) Hollingworth, C.; Gouverneur, V. Chem.
Commun. 2012, 48, 2929. (d) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature
2
011, 473, 470. (e) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160. (f)
Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 11, 1804. For
recent examples of fluorination, see: (g) Mazzotti, A. R.; Campbell,
M. G.; Tang, P.; Murphy, J. M.; Ritter, T. J. Am. Chem. Soc. 2013, 135,
(2) (a) Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev.
2008, 108, 1501. (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (c)
M u€ ller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (d) Jeschke,
P. ChemBioChem 2004, 5, 570. (e) Phelps, M. E. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 9226. (f) Hougham, G. G.; Cassidy, P. E.; Johns, K.;
Davidson, T. Fluoropolymers: Synthesis and Properties; Kluwer Aca-
demic: New York, 1999. (g) Banks, R. E., Smart, B. E., Tatlow, J. C., Eds.
Organofluorine Chemistry: Principles and Commerical Applications;
Plenum Press: New York, 1994.
(3) (a) Chen, J.; Zheng, F.; Huang, Y.; Qing, F. J. Org. Chem. 2011,
76, 6525. (b) Fan, S.; He, C.; Zhang, X. Tetrahedron 2010, 66, 5218. (c)
Orvieto, F.; Koch, U.; Matassa, V. G.; Muraglia, E. Bioorg. Med. Chem.
Lett. 2003, 13, 2745. (d) Yoder, N. C.; Kumar, K. Chem. Soc. Rev. 2002,
31, 335. (e) Takeuchi, Y.; Shiragami, T.; Kimura, K.; Suzuki, E.;
Shibata, N. Org. Lett. 1999, 1, 1571. (f) Poulter, C. D.; Dolence, J. M.
Tetrahedron 1996, 52, 119. (g) Pikul, S.; Mieling, G. E.; Mieling, K. K.;
Solinsky, K. M.; De, B.; Almstead, N. G.; Natchus, M. G. U. S. Patent
6,852,751B2, Feb 8, 2005.
1
4012. (h) Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. J. Am. Chem.
Soc. 2013, 135, 2470. (i) Braun, M. G.; Doyle, A. G. J. Am. Chem. Soc.
013, 135, 12990. (j) Braun, M. G.; Katcher, M. H.; Doyle, A. G. Chem.
2
Sci. 2013, 4, 1216. (k) Shunatona, H. P.; Fruh, N.; Wang, Y.; Rauniyar,
V.; Toste, F. D. Angew. Chem., Int. Ed. 2013, 52, 1. (l) Li, Z.; Song, L.; Li,
C. J. Am. Chem. Soc. 2013, 135, 4640. (m) Truong, T.; Kilmovica, k.;
Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342. (n) Zhang, Z.; Wang, F.;
Mu, X.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2013, 52, 7549. (o) Liu,
W.; Groves, J. T. Angew. Chem., Int. Ed. 2013, 52, 6024. (p) Fier, P. S.;
Luo, J.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2552. (q) Ye, Y.;
Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 4648. (r) Xue, C.; Jiang, X.;
Fu, C.; Ma, S. Chem. Commun. 2013, 49, 5651. (s) Liu, W.; Huang, X.;
Cheng, M.; Nielsen, R. J.; Goddard, W. A., III; Groves, J. T. Science
2012, 337, 1322. (t) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012,
134, 13588. (u) Topczewski, J. J.; Tewson, T. J.; Nguyen, H. M. J. Am.
Chem. Soc. 2011, 133, 19318. (v) Katcher, M. H.; Sha, A.; Doyle, A. G.
J. Am. Chem. Soc. 2011, 133, 15902. (w) Lee, E.; Kamlet, A. S.; Powers,
D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.;
Hooker, J. M.; Ritter, T. Science 2011, 334, 639. (x) Katcher, M. H.;
Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 17402. (y) Tang, P.; Furuya,
T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150. (z) Watson, D. A.; Su,
M. J.; Teverovskiy, G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.;
Buchwald, S. L. Science 2009, 325, 1661.
(4) (a) Poss, A. J.; Shia, G. A. Tetrahedron Lett. 1995, 36, 4721. (b)
Purrington, S. T.; Woodard, D. L.; Cale, N. C. J. Fluorine Chem. 1990,
48, 345. (c) Fleming, L.; Goldhill, J.; Paterson, L. Tetrahedron Lett.
1979, 20, 3205.
(5) (a) Jiang, H.; Falcicchio, A.; Jensen, K. L.; Paix ~a o, M. W.;
Bertelsen, S.; Jørgensen, K. A. J. Am. Chem. Soc. 2009, 131, 7153. (b)
Oldendorf, J.; Haufe, G. J. Prakt. Chem. 2000, 342, 52. (c) Davis, F. A.;
Kasu, P. V. N.; Sundarababu, G.; Qi, H. J. Org. Chem. 1997, 62, 7546.
1
0.1021/ol403017e r 2013 American Chemical Society
Published on Web 11/14/2013