3
-Ketosteroid-⌬4-(5␣)-dehydrogenase Reaction Mechanism
atom. The FAD N5 atom is in a good position to abstract a
hydride ion from the C5 atom of the enolate intermediate. In
synchrony, the lone pair electrons of the negatively charged C3
oxygen atom move back toward C3 and the double bond
between C3 and C4 shifts to the C4-C5 position, generating the
product. The negative charge on the N5 of FAD can be delocal-
(2008) 3-Keto-5␣-steroid ⌬ -dehydrogenase from Rhodococcus erythro-
1
polis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are
highly specific enzymes that function in cholesterol catabolism. Biochem.
J. 410, 339–346
6
. Fujii, C., Morii, S., Kadode, M., Sawamoto, S., Iwami, M., and Itagaki, E.
(
1999) Essential tyrosine residues in 3-ketosteroid-⌬ -dehydrogenase
1
from Rhodococcus rhodochrous. J. Biochem. 126, 662–667
7
. Matsushita, H., and Itagaki, E. (1992) Essential histidine residue in 3-ke-
ized over the N1-C ϭ O region, but also the rest of the isoallox-
2
tosteroid-⌬ -dehydrogenase. J. Biochem. 111, 594–599
1
azine ring may contribute (47). Two backbone amides stabilize
8
. Van der Geize, R., Yam, K., Heuser, T., Wilbrink, M. H., Hara, H., Ander-
ton, M. C., Sim, E., Dijkhuizen, L., Davies, J. E., Mohn, W. W., and Eltis,
L. D. (2007) A gene cluster encoding cholesterol catabolism in a soil acti-
nomycete provides insight into Mycobacterium tuberculosis survival in
macrophages. Proc. Natl. Acad. Sci. U.S.A. 104, 1947–1952
the negative charge on O by hydrogen bonding, and the dipole
2
moment of the C-terminal helix is also directed toward O . The
2
generated reducing equivalents may be donated to a respiratory
chain, similar to what has been proposed for the ⌬1-KSTD of
Arthrobacter globiformis (48), but further studies are required
to confirm this.
9
. Rosas-Magallanes, V., Stadthagen-Gomez, G., Rauzier, J., Barreiro, L. B.,
Tailleux, L., Boudou, F., Griffin, R., Nigou, J., Jackson, M., Gicquel, B., and
Neyrolles, O. (2007) Signature-tagged transposon mutagenesis identifies
novel Mycobacterium tuberculosis genes involved in the parasitism of hu-
man macrophages. Infect. Immun. 75, 504–507
The Importance of Ketosteroid Dehydrogenases for Pathogenic
Organisms—⌬4-(5␣)-KSTD is the first ketosteroid dehydro-
genase of which a crystal structure has been elucidated. The 10. van Oosterwijk, N., Knol, J., Dijkhuizen, L., van der Geize, R., and Dijkstra,
enzyme has an important role in the desaturation of the steroid
A ring, which is a key step in the microbial degradation of sat-
urated steroids. It has been proposed that saturated steroid
intermediates are formed during cholesterol catabolism. Sev-
eral pathogenic bacteria, including M. tuberculosis, Rhodococ-
cus equi, and Mycobacterium bovis, contain a cholesterol cata-
B. W. (2011) Cloning, overexpression, purification, crystallization and
preliminary x-ray analysis of 3-ketosteroid ⌬ -(5␣)-dehydrogenase from
4
Rhodococcus jostii RHA1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Com-
mun. 67, 1269–1273
1
1. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R., and Leslie, A. G.
(
2011) iMOSFLM. A new graphical interface for diffraction-image proc-
essing with MOSFLM. Acta Crystallogr. D 67, 271–281
bolic pathway similar to that of R. jostii RHA1 (8, 49). In 12. Evans, P. (2006) Scaling and assessment of data quality. Acta Crystallogr. D
6
2, 72–82
M. tuberculosis this pathway and in particular the ⌬1-KSTD
enzyme (Rv3537, which shows 28% sequence identity to R. jostii
RHA1 ⌬4-(5␣)-KSTD) have been implicated to be important
for growth of the intracellular pathogen in the hostile environ-
ment of macrophages (50, 51). This makes the cholesterol cat-
1
3. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans,
P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas,
S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read,
R. J., Vagin, A., and Wilson, K. S. (2011) Overview of the CCP4 suite and
current developments. Acta Crystallogr. D 67, 235–242
abolic pathway a promising target for the development of ther- 14. Jaroszewski, L., Rychlewski, L., Li, Z., Li, W., and Godzik, A. (2005)
FFAS03. A server for profile-profile sequence alignments. Nucleic Acids
apeutic agents to combat M. tuberculosis (8). Our R. jostii
Res. 33, W284–W288
RHA1 ⌬4-(5␣)-KSTD structure may facilitate the design of
1
5. Bamford, V., Dobbin, P. S., Richardson, D. J., and Hemmings, A. M. (1999)
Open conformation of a flavocytochrome c3 fumarate reductase. Nat.
Struct. Biol. 6, 1104–1107
potent ketosteroid dehydrogenase inhibitors, as a first step
toward the development of new antituberculosis drugs.
1
6. Leys, D., Tsapin, A. S., Nealson, K. H., Meyer, T. E., Cusanovich, M. A., and
Van Beeumen, J. J. (1999) Structure and mechanism of the flavocyto-
chrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat.
Struct. Biol. 6, 1113–1117
Acknowledgments—We are grateful to the scientists of Beamlines
BM16 and ID14-1 (European Synchrotron Radiation Facility,
Grenoble, France) for help during data collections.
1
7. Doherty, M. K., Pealing, S. L., Miles, C. S., Moysey, R., Taylor, P., Walkin-
shaw, M. D., Reid, G. A., and Chapman, S. K. (2000) Identification of the
active site acid/base catalyst in a bacterial fumarate reductase. A kinetic
and crystallographic study. Biochemistry 39, 10695–10701
REFERENCES
1
. McLeod, M. P., Warren, R. L., Hsiao, W. W., Araki, N., Myhre, M., Fer-
nandes, C., Miyazawa, D., Wong, W., Lillquist, A. L., Wang, D., Dosanjh,
M., Hara, H., Petrescu, A., Morin, R. D., Yang, G., Stott, J. M., Schein, J. E.,
Shin, H., Smailus, D., Siddiqui, A. S., Marra, M. A., Jones, S. J., Holt, R.,
18. Iverson, T. M., Luna-Chavez, C., Croal, L. R., Cecchini, G., and Rees, D. C.
(2002) Crystallographic studies of the Escherichia coli quinol-fumarate
reductase with inhibitors bound to the quinol-binding site. J. Biol. Chem.
277, 16124–16130
Brinkman, F. S., Miyauchi, K., Fukuda, M., Davies, J. E., Mohn, W. W., and 19. Yankovskaya, V., Horsefield, R., Törnroth, S., Luna-Chavez, C., Miyoshi,
Eltis, L. D. (2006) The complete genome of Rhodococcus sp. RHA1 pro-
vides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. U.S.A.
H., Léger, C., Byrne, B., Cecchini, G., and Iwata, S. (2003) Architecture of
succinate dehydrogenase and reactive oxygen species generation. Science
299, 700–704
1
03, 15582–15587
2
3
. van der Geize, R., and Dijkhuizen, L. (2004) Harnessing the catabolic di-
versity of rhodococci for environmental and biotechnological applica-
tions. Curr. Opin. Microbiol. 7, 255–261
20. Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M., and Rao, Z.
(2005) Crystal structure of mitochondrial respiratory membrane protein
complex II. Cell 121, 1043–1057
. Horinouchi, M., Hayashi, T., Yamamoto, T., and Kudo, T. (2003) A new 21. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Sto-
bacterial steroid degradation gene cluster in Comamonas testosteroni
TA441 which consists of aromatic-compound degradation genes for seco-
roni, L. C., and Read, R. J. (2007) Phaser crystallographic software. J. Appl.
Crystallogr. 40, 658–674
steroids and 3-ketosteroid dehydrogenase genes. Appl. Environ. Micro- 22. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and
biol. 69, 4421–4430
development of Coot. Acta Crystallogr. D 66, 486–501
4
5
. Levy, H. R., and Talalay, P. (1959) Bacterial oxidation of steroids. II. Studies 23. Terwilliger, T. C. (2000) Maximum-likelihood density modification. Acta
on the enzymatic mechanism of ring A dehydrogenation. J. Biol. Chem.
34, 2014–2021
. Knol, J., Bodewits, K., Hessels, G. I., Dijkhuizen, L., and van der Geize, R.
Crystallogr. D 56, 965–972
2
24. Langer, G., Cohen, S. X., Lamzin, V. S., and Perrakis, A. (2008) Automated
macromolecular model building for x-ray crystallography using ARP/
3
0982 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 287•NUMBER 37•SEPTEMBER 7, 2012