10.1002/chem.201905228
Chemistry - A European Journal
COMMUNICATION
The ability of the sheet to capture and inhibit the growth of the
bacteria was studied by monitoring the changes of optical density
at 600 nm using a microplate reader. For this, E. coli was cultured
alone (control) and along with 1/2/3 nanosheets for 24 h. As
expected, normal bacterial growth was observed for E. coli alone
and E. coli treated with sheets of 3. On the other hand, a
significant reduction in the growth of the bacteria was observed
for E. coli treated nanosheets of 1 and 2. Agglutination Index (AI)
calculated from 20 random fields of microscopic images (TEM and
CLSM) showed high AI values of 60 and 62 for the sheets of 1
and 2, respectively, which are higher than those reported for
similar supramolecular systems.[6c] Inhibition of bacterial growth
was further supported by plate-counting technique. For this, E.
coli was cultured alone (control) and along with 1/2 nanosheets
for 24 h, spread over agar plate and the colony-forming ability was
monitored over a period of time. Colony counting showed a
normal growth for E. coli (Figure 3b), whereas significant inhibition
of bacterial growth was observed for E. coli treated with sheets of
1 and 2 (Figure 3c and 3d). These results fully support our
hypothesis that the galactose decorated sheet allow the efficient
capturing of bacteria through specific multivalent interaction
between galactose protruded on the sheet and galactose binding
protein in the bacterial pili of DH5a strain. This leads to the
agglutination of bacteria that prevent the motility and further
growth of the bacteria. We have also demonstrated the potential
of the sheet to capture and remove bacteria from water that was
artificially contaminated with E. coli. This was shown by treating
the bacteria contaminated water with sheets of 2 at two different
concentrations (0.2 and 0.3 mM) in PBS buffer (pH 7.5) and kept
undisturbed for 4 h. Agglutination followed by sedimentation of the
bacteria was clearly observed for both the concentrations of 2
(Figure 3e, vials 3 and 4), and as expected the sheets of high
concentration exhibited efficient bacterial capture (Figure 3e, vial
4). Furthermore, turbid bacteria solution became very clear after
bacterial capture, whereas no sedimentation of bacteria was
observed for E. coli alone (Figure 3e, vial 1).
In summary, we have reported the design and synthesis of a
new class of carbohydrate-based Janus amphiphiles that
spontaneously self-assemble into high aspect ratio, galactose-
decorated nanosheets. We have also shown the potential of 2D
sheet to act as a multivalent ligand for the capturing and
agglutination of bacteria through specific host-guest interaction.
To our knowledge, this is the first report demonstrating the crafting
of sugar-grafted, high aspect ratio, 2D sheet from the self-
assembly of sugar-based Janus amphiphile that efficiently
capture, agglutinate and inhibit the growth of bacteria. This study
indisputably suggests that the carbohydrate-decorated 2D sheets
having large surface area are indeed a promising class of
nanostructures for the interaction with bacteria, and our results
are expected to open up further research interest towards the
development of antibacterial nanomaterials.
Keywords: self-assembly • amphiphiles • 2D materials •
bacterial capture • fluorescence
[1]
[2]
a) A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V. M. Rotello, Chem. Soc.
Rev. 2019, 48, 415-427; b) S. Bhatia, L. C. Camacho, R. Haag, J. Am.
Chem. Soc. 2016, 138, 8654-8666.
a) K. H. Schlick, C. K. Lange, G. D. Gillispie, M. J. Cloninger, J. Am.
Chem. Soc. 2009, 131, 16608–16609; b) S. Zhang, R.-O. Moussodia, H.-
J. Sun, P. Leowanawat, A. Muncan, C. D. Nusbaum, K. M. Chelling, P.
A. Heiney, M. L. Klein, S. André, R. Roy, H.-J. Gabius, V. Percec, Angew.
Chem. 2014, 126, 11079–11083; Angew. Chem. Int. Ed. 2014, 53,
10899–10903.
[3]
[4]
a) K. El-Boubbou, C. Gruden, X. Huang, J. Am. Chem. Soc. 2007, 129,
13392-13393; b) R. L. Phillips, O. R. Miranda, C.-C. You, V. M. Rotello,
U. H. F. Bunz, Angew. Chem. 2008, 120, 2628–2632; Angew. Chem. Int.
Ed. 2008, 47, 2590–2594; c) K. Petkau, A. Kaeser, I. Fischer, L.
Brunsveld, A. P. H. J. Schenning, J. Am. Chem. Soc. 2011, 133, 17063–
17071.
a) P. Compain, C. Decroocq, J. Iehl, M. Holler, D. Hazelard, T. Mena
Barragán, C. O. Mellet, J.-F. Nierengarten, Angew. Chem. 2010, 122,
5889–5892; Angew. Chem. Int. Ed. 2010, 49, 5753–5756; b) A. Muñoz,
D. Sigwalt, B. M. Illescas, J. Luczkowiak, L. Rodríguez-Pérez, I.
Nierengarten, M. Holler, J.-S. Remy, K. Buffet, S. P. Vincent, J. Rojo, R.
Delgado, J.-F. Nierengarten, N. Martín, Nat. Chem. 2016, 8, 50-57.
a) H. Wang, L. Gu, Y. Lin, F. Lu, M. J. Meziani, P. G. Luo, W. Wang, L.
Cao, Y.-P. Sun, J. Am. Chem. Soc. 2006, 128, 13364-13365; b) G. Yu,
J. Li, W. Yu, C. Han, Z. Mao, C. Gao, F. Huang, Adv. Mater. 2013, 25,
6373–6379.
[5]
[6]
a) J.-H. Ryu, E. Lee, Y.-b. Lim, M. Lee, J. Am. Chem. Soc. 2007, 129,
4808-4814; b) M. K. Müller, L. Brunsveld, Angew. Chem. 2009, 121,
2965–2968; Angew. Chem. Int. Ed. 2009, 48, 2921–2924; c) G. Yu, Y.
Ma, C. Han, Y. Yao, G. Tang, Z. Mao, C. Gao, F. Huang, J. Am. Chem.
Soc. 2013, 135, 10310−10313.
[7]
[8]
D.-W. Lee, T. Kim, I.-S. Park, Z. Huang, M. Lee, J. Am. Chem. Soc. 2012,
134, 14722−14725.
Z. Qi, P. Bharate, C.-H. Lai, B. Ziem, C. Böttcher, A. Schulz, F. Beckert,
B. Hatting, R. Mülhaupt, P. H. Seeberger, R. Haag, Nano Lett. 2015, 15,
6051-6057.
[9]
A. Battigelli, J. H. Kim, D. C. Dehigaspitiya, C. Proulx, E. J. Robertson,
D. J. Murray, B. Rad, K. Kirshenbaum, R. N. Zuckermann, ACS Nano
2018, 12, 2455−2465.
[10] a) J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura,
K. Ito, T. Hashizume, N. Ishii, T. Aida, Science 2004, 304, 1481-1483;
b) J. F. Hulvat, M. Sofos, K. Tajima, S. I. Stupp, J. Am. Chem. Soc. 2005,
127, 366-372; c) F. J. M. Hoeben, I. O. Shklyarevskiy, M. J. Pouderoijen,
H. Engelkamp, A. P. H. J. Schenning, P. C. M. Christianen, J. C. Maan,
E. W. Meijer, Angew. Chem. 2006, 118, 1254–1258; Angew. Chem. Int.
Ed. 2006, 45, 1232–1236; d) E. Lee, J.-K. Kim, M. Lee, Angew. Chem.
2009, 121, 3711–3714; Angew. Chem. Int. Ed. 2009, 48, 3657-3660; e)
M. A. Azagarsamy, P. Sokkalingam, S. Thayumanavan, J. Am. Chem.
Soc. 2009, 131, 14184–14185; f) F. García, L. Sánchez, Chem. Eur. J.
2010, 16, 3138–3146; g) B. Narayan, S. P. Senanayak, A. Jain, K. S.
Narayan, S. J. George, Adv. Funct. Mater. 2013, 23, 3053–3060; h) C.
Rest, M. J. Mayoral, K. Fucke, J. Schellheimer, V. Stepanenko, G.
Fernández, Angew. Chem. 2014, 126, 716-721; Angew. Chem. Int. Ed.
2014, 53, 700–705; i) X. Zhang, D. Görl, V. Stepanenko, F. Würthner,
Angew. Chem. 2014, 126, 1294–1298; Angew. Chem. Int. Ed. 2014, 53,
1270–1274; j) S. Yagai, S. Okamura, Y. Nakano, M. Yamauchi, K.
Kishikawa, T. Karatsu, A. Kitamura, A. Ueno, D. Kuzuhara, H. Yamada,
T. Seki, H. Ito, Nat. Commun. 2014, 5, 4013; k) V. S. Talens, P.
Englebienne, T. T. Trinh, W. E. M. Noteborn, I. K. Voets, R. E. Kieltyka,
Angew. Chem. 2015, 127, 10648–10652; Angew. Chem. Int. Ed. 2015,
54, 10502–10506; l) S. Ghosh, D. S. Philips, A. Saeki, A. Ajayaghosh,
Adv. Mater. 2017, 29, 1605408–1605408.
Acknowledgements
Financial supports from DBT and KSCSTE are gratefully
acknowledged. We thank UGC and CSIR for research fellowships.
D. K. V. thanks IISER for a post-doc fellowship.
This article is protected by copyright. All rights reserved.