ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
A New Route to r‑Carbolines Based on
6π-Electrocyclization of Indole-3-alkenyl
Oximes
Sophie J. Markey, William Lewis, and Christopher J. Moody*
School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.
Received November 5, 2013
ABSTRACT
Indoles are converted into R-carbolines in four steps by acylation at C-3, Boc-protection, olefination of the resulting 3-indolyl aldehydes or ketones to
give N-Boc-3-indolyl alkenyl oxime O-methyl ethers, which upon heating to 240 °C under microwave irradiation undergo loss of the Boc-group, and
6π-electrocyclization to R-carbolines, following aromatization by loss of methanol (11 examples, 30À90% yield).
In contrast to β-carbolines that are widely represented
among natural products and synthetic bioactive com-
pounds,1À3 R-carbolines (pyrido[2,3-b]indoles) are consid-
erably less well investigated.4,5 Nevertheless there are some
important examples such as the naturally occurring antic-
ancer compounds grossularine-1 and -26À9 and the neuronal
cell protective agent mescengricin (Figure 1).10 In the medi-
cinal chemistry arena, R-carbolines such as the GABA
modulator,11 and the inhibitor of microsomal triglyceride
transport protein implitapide,12,13 have also been widely
studied.
As a consequence, routes for the construction of the
R-carboline nucleus are of interest, but unlike their
β-carboline counterparts that are almost invariably pre-
pared from tryptophan or tryptamine derivatives, there is
no main synthetic access to the isomeric R-carbolines. Thus,
R-carbolines have been obtained from 2-aminoindoles,14À16
by a variation of the GraebeÀUllmann synthesis of
(1) Airaksinen, M. M.; Kari, I. Med. Biol. 1981, 59, 21–34.
(2) Peduto, A.; More, V.; de Caprariis, P.; Festa, M.; Capasso, A.;
Piacente, S.; De Martino, L.; De Feo, V.; Filosa, R. Mini-Rev. Med.
Chem. 2011, 11, 486–491.
(3) Cao, R.; Peng, W.; Wang, Z.; Xu, A. Curr. Med. Chem. 2007, 14,
479–500.
(4) Smirnova, O. B.; Golovko, T. V.; Granik, V. G. Pharm. Chem. J.
USSR 2011, 44, 654–678.
(5) Smirnova, O. B.; Golovko, T. V.; Granik, V. G. Pharm. Chem. J.
USSR 2011, 45, 389–400.
(11) Bolton, D.; Forbes, I. T.; Hayward, C. J.; Piper, D. C.; Thomas,
D. R.; Thompson, M.; Upton, N. Bioorg. Med. Chem. Lett. 1993, 3,
1941–1946.
(12) Pahan, K. Cell. Mol. Life Sci. 2006, 63, 1165–1178.
(13) Ueshima, K.; Akihisa-Umeno, H.; Nagayoshi, A.; Takakura, S.;
Matsuo, M.; Mutoh, S. Biol. Pharm. Bull. 2005, 28, 247–252.
(14) Kumar, A. S.; Nagarajan, R. Org. Lett. 2011, 13, 1398–1401.
(15) Gupta, S.; Kumar, B.; Kundu, B. J. Org. Chem. 2011, 76, 10154–
10162.
(6) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S.
Synlett 1995, 147–148.
(7) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S.
J. Org. Chem. 1995, 60, 5899–5904.
(8) Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1995, 36, 2615–
2618.
(9) Miyake, F. Y.; Yakushijin, K.; Horne, D. A. Angew. Chem., Int.
Ed. 2005, 44, 3280–3282.
(10) Kim, J. S.; ShinYa, K.; Furihata, K.; Hayakawa, Y.; Seto, H.
(16) Kumar, A. S.; Rao, P. V. A.; Nagarajan, R. Org. Biomol. Chem.
2012, 10, 5084–5093.
Tetrahedron Lett. 1997, 38, 3431–3434.
r
10.1021/ol403191k
XXXX American Chemical Society