Journal of the American Chemical Society
Communication
(15) Sawayama, Y.; Nishikawa, T. Angew. Chem., Int. Ed. 2011, 50,
7176−7178.
(16) For related studies with a voltage-gated potassium channel:
Morin, T. J.; Kobertz, W. R. ACS Chem. Biol. 2007, 2, 469−473.
(17) Andresen, B. M.; Du Bois, J. J. Am. Chem. Soc. 2009, 131,
12524−12525.
(18) As shown in Figure S3 (Supporting Information), maximal
irreversible inhibition is ∼85% upon either extended incubation times
or iterative application of 1; see Supporting Information for additional
details. A similar inability to completely saturate current levels using a
high affinity, covalent toxin against nAChR has been noted previously;
see: Ambrus, J. I.; Halliday, J. I.; Kanizaj, N.; Absalom, N.; Harpsøe, K.;
Balle, T.; Chebib, M.; McLeod, M. D. Chem. Commun. 2012, 48,
6699−6701.
have general applicability for live-cell investigations of NaV
function, studies of which are ongoing and will be reported in
due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental synthetic procedures and characterization data for
all novel compounds, details of cell culture and electro-
physiology procedures, additional supplementary electrophysio-
logical data, and full discussion of NMR experiments. This
material is available free of charge via the Internet at http://
(19) Isom, L. L.; Scheuer, T.; Brownstein, A. B.; Ragsdale, D. S.;
Murphy, B. J.; Catterall, W. A. J. Biol. Chem. 1995, 270, 3306−3312.
(20) Prior studies indicate that the TTX-sensitive isoforms NaV1.2,
1.3, 1.6, and 1.7 are expressed in embryonic rat hippocampal neurons,
see: Mechaly, I.; Scamps, F.; Chabbert, C.; Sans, A.; Valmier, J.
Neuroscience 2005, 130, 389−396. We have determined an IC50 of 2.9
0.4 nM for STX against these cells (Figure S6, Supporting
Information).
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Department of Chemical Physiology, The Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California
92037, United States.
(21) For a general review, see: Vacher, H.; Mohapatra, D. P.;
Trimmer, J. S. Physiol. Rev. 2008, 88, 1407−1447.
Notes
(22) Experiments in which either 8 or a monoguanidine-maleimide
construct S1 (Figure S7c, Supporting Information) are applied in
combination with 5 μM STX show no irreversible block of current.
These data argue against the possibility that toxin binding simply
promotes nonspecific alkylation. For reasons that are not evident,
however, simultaneous application of a 20-fold excess of either STX or
TTX with 1 does not significantly attenuate irreversible block of
channel current.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. T. R. Cummins (Indiana University) for
providing the expression plasmid for NaV1.5, Dr. L. L Isom
(University of Michigan) for providing the expression plasmid
for NaVβ1, and Dr. W. A. Catterall (University of Washington)
for the gift of a NaV1.2 stably expressed cell line. We are
grateful to Dr. Bianxiao Cui (Stanford University) and Wenjun
Xie for providing embryonic rat hippocampal neurons for our
experiments. We are indebted to Dr. M. Maduke for her helpful
discussions and for generous use of her lab space. W.H.P. is
supported by a Stanford Interdisciplinary Graduate Fellowship
(SIGF). This work was financially supported by National
Institutes of Health R01 NS045684, R21 NS070064.
(23) Koehn, F. E.; Ghazarossian, V. E.; Schantz, E. J.; Schnoes, H. K.;
Strong, F. M. Bioorg. Chem. 1981, 10, 412−428.
(24) Andresen, B. M. Ph.D. Dissertation, Stanford University, 2010.
(25) Preparation of C2-substituted maleimides adapted from Miles,
W. H.; Yan, M. Tetrahedron Lett. 2010, 51, 1710−1712.
(26) For preparation of a biotinylated saxitoxin derivative through
semisynthesis, see: Robillot, C.; Kineavy, D.; Burnell, J.; Llewellyn, L.
E. Toxicon 2009, 53, 460−465.
(27) Cravatt, B. F.; Wright, A. T.; Kozarich, J. W. Annu. Rev. Biochem.
2008, 77, 383−414.
REFERENCES
■
(1) Aidley, D. J. The Physiology of Excitable Cells; Cambridge
University Press: Cambridge, UK, 1998; Chapter 5.
(2) Catterall, W. A.; Goldin, A. L.; Waxman, S. G. Pharmacol. Rev.
2005, 57, 397−409.
(3) Nardi, A.; Damann, N.; Hertrampf, T.; Kless, A. ChemMedChem
2012, 7, 1712−1740.
(4) Leterrier, C.; Brachet, A.; Fache, M.-P.; Dargent, B. Neurosci. Lett.
2010, 486, 92−100.
(5) Fozzard, H. A.; Lipkind, G. M. Mar. Drugs 2010, 8, 219−234.
(6) Lipkind, G. M.; Fozzard, H. A. Biophys. J. 1994, 66, 1−13.
(7) Tikhonov, D. B.; Zhorov, B. S. Biophys. J. 2005, 88, 184−197.
(8) Scheib, H.; McLay, I.; Guex, N.; Clare, J. J.; Blaney, F. E.; Dale, T.
J.; Tate, S. N.; Robertson, G. M. J. Mol. Model. 2006, 12, 813−822.
(9) Walker, J. R.; Novick, P. A.; Parsons, W. H.; McGregor, M.;
Zablocki, J.; Pande, V. S.; Du Bois, J. Proc. Natl. Acad. Sci. U. S. A.
2012, 109, 18102−18107.
(10) Tanino, H.; Nakata, T.; Kaneko, T.; Kishi, Y. J. Am. Chem. Soc.
1977, 99, 2818−2819.
(11) Jacobi, P. A.; Martinelli, M. J.; Polanc, S. J. Am. Chem. Soc. 1984,
106, 5594−5598.
(12) Fleming, J. J.; McReynolds, M. D.; Du Bois, J. J. Am. Chem. Soc.
2007, 129, 9964−9975.
(13) Iwamoto, O.; Shinohara, R.; Nagasawa, K. Chem.Asian J.
2009, 4, 277−285.
(14) Bhonde, V. R.; Looper, R. E. J. Am. Chem. Soc. 2011, 133,
20172−20174.
D
dx.doi.org/10.1021/ja4019644 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX