302
Russ.Chem.Bull., Int.Ed., Vol. 60, No. 2, February, 2011
Goikhman et al.
to the corresponding signals of copolymer 6. Signals for the proꢀ
tons of units s are given below.
4ꢀ(4ꢀMethoxystyryl)ꢀ2ꢀ(pꢀtolyl)pyrrolo[3,4ꢀc]quinolineꢀ1,3ꢀ
dione (9b). Yellow crystals. The yield was 69%, m.p. 247—249 °C.
1H NMR (CDCl3), δ: 2.45 (s, 3 H, H(1)); 3.78 (s, 3 H, OMe);
7.06 (d, 2 H, H(12), H(13), J = 8.7 Hz); 7.35 (s, 4 H,
H(2)—H(5)); 7.72 (d, 2 H, H(14), H(15), J = 8.6 Hz); 7.83
(t, 1 H, H(7), J = 8.0 Hz); 8.01 (t, 1 H, H(8), J = 8.0 Hz);
8.15—8.23 (m, 3 H, H(9)—H(11)); 8.74 (d, 1 H, H(6), J = 8.2 Hz).
Found (%): C, 76.15; H, 5.28; N, 6.03; O, 12.54. C27H20N2O3.
Calculated (%): C, 77.14; H, 4.76; N, 6.67; O, 11.43.
4ꢀ(4ꢀBromostyryl)ꢀ2ꢀ(pꢀtolyl)pyrrolo[3,4ꢀc]quinolineꢀ1,3ꢀ
dione (9c). Light yellow crystals. The yield was 73%, m.p. 246 °C.
1H NMR (CDCl3), δ: 2.47 (s, 3 H, H(1)); 7.38 (s, 4 H,
H(2)—H(5)); 7.55 (d, 2 H, H(12), H(13), J = 8.5 Hz); 7.62
(d, 2 H, H(14), H(15), J = 8.5 Hz); 7.74 (t, 1 H, H(7), J = 7.7 Hz);
7.93 (t, 1 H, H(8), J = 7.7 Hz); 8.22 (m, 2 H, H(9), H(11)); 8.38
(d, 1 H, H(10), J = 15.8 Hz); 8.87 (d, 1 H, H(6), J = 8.3 Hz).
Found (%): C, 65.44; H, 4.13; N, 5.77; O, 7.87. C26H17N2O2Br.
Calculated (%): C, 66.52; H, 3.62; N, 5.97; O, 6.82.
4ꢀStyrylꢀ2ꢀ(pꢀtolyl)pyrrolo[3,4ꢀc]quinolineꢀ1,3ꢀdione (9d).
Greenish yellow crystals. The yield was 56%, m.p. 250—252 °C.
1H NMR (CDCl3), δ: 2.47 (s, 3 H, H(1)); 7.28—7.45 (m, 7 H,
H(2)—H(5), H(14), H(15), H(16)); 7.70 (t, 1 H, H(7), J = 7.2 Hz);
7.76 (d, 2 H, H(12), H(13), J = 7.2 Hz); 7.91 (t, 1 H, H(8),
J = 7.2 Hz); 8.21 (d, 1 H, H(9), J = 8.7 Hz); 8.28 (d, 1 H, H(11),
J = 15.9 Hz); 8.38 (d, 1 H, H(10), J = 15.7 Hz); 8.84 (d, 1 H, H(6),
J = 8.3 Hz). Found (%): C, 79.22; H, 5.16; N, 6.93; O, 8.69.
C26H18N2O2. Calculated (%): C, 80.00; H, 4.62; N, 7.18; O, 8.20.
Poly[(styrene)ꢀcoꢀ(4ꢀaminostyrene)ꢀcoꢀ(4ꢀ(4ꢀ(4ꢀdimethylꢀ
aminostyryl)ꢀ1,3ꢀdioxoꢀ1,3ꢀdihydropyrrolo[3,4ꢀc]quinolinꢀ2ꢀ
yl)styrene)] (7a). The yield was 47%. 1H NMR (CDCl3), δ: 1.53
(br.s 2 H, H(1)); 1.92 (br.s 1 H, H(2)), 2.91 (br.s 6 H, NMe2);
6.25—7.25 (br.m, 4 H, H(3)—H(6)); 7.31—8.89 (br.m, 10 H,
H(9)—H(12), H(14), H(15), H(1´)—H(4´)).
Poly[(styrene)ꢀcoꢀ(4ꢀaminostyrene)ꢀcoꢀ(4ꢀ(4ꢀ(4ꢀmethoxyꢀ
styryl)ꢀ1,3ꢀdioxoꢀ1,3ꢀdihydropyrrolo[3,4ꢀc]quinolinꢀ2ꢀyl)styrꢀ
ene)] (7b). The yield was 62%. 1H NMR (CDCl3), δ: 1.53 (br.s 2 H,
H(1)); 1.92 (br.s 1 H, H(2)); 3.76 (br.s 3 H, OMe); 6.25—7.25
(br.m, 6 H, H(3)—H(6), H(1´), H(3´)); 7.31—8.89 (br.m, 8 H,
H(9)—H(12), H(14), H(15), H(2´), H(4´)).
Poly[(styrene)ꢀcoꢀ(4ꢀaminostyrene)ꢀcoꢀ(4ꢀ(4ꢀ(4ꢀbromostyrꢀ
yl)ꢀ1,3ꢀdioxoꢀ1,3ꢀdihydropyrrolo[3,4ꢀc]quinolinꢀ2ꢀyl)styrene)]
1
(7c). The yield was 49%. H NMR (CDCl3), δ: 1.53 (br.s 2 H,
H(1)); 1.92 (br.s 1 H, H(2)); 6.25—7.25 (br.m, 4 H, H(3)—H(6));
7.31—8.89 (br.m, 10 H, H(9)—H(12), H(14), H(15),
H(1´)—H(4´)).
Poly[(styrene)ꢀcoꢀ(4ꢀaminostyrene)ꢀcoꢀ(4ꢀ(1,3ꢀdioxoꢀ4ꢀ
styrylꢀ1,3ꢀdihydropyrrolo[3,4ꢀc]quinolinꢀ2ꢀyl)styrene)] (7d). The
yield was 53%. 1H NMR (CDCl3), δ: 1.53 (br.s 2 H, H(1));
1.92 (br.s 1 H, H(2)); 6.25—7.45 (br.m, 6 H, H(3)—H(6),
H(1´)—H(3´)); 7.45—8.89 (br.m, 9 H, H(9)—H(12), H(14),
H(15), H (2´), H(4´), H(5´)).
4ꢀMethylꢀ2ꢀ(4ꢀmethylphenyl)pyrrolo[3,4ꢀc]quinolineꢀ1,3ꢀdiꢀ
one (8). A solution of anhydride 5 (2.24 g, 0.01 mol) in DMF
(20 mL) (preꢀprepared by stirring on a magnetic stirrer over 1 h)
was added to a solution of pꢀtoluidine (1.125 g, 0.01 mol) in
DMF (8.5 mL) cooled to –5 °C with stirring in the flow of arꢀ
gon, maintaining temperature below 10 °C. The reaction mixꢀ
ture was stirred for 1 h at 5 °C, then for 6 h at room temperature,
and kept for 10 h. Pyridine (0.55 mL) and acetic anhydride
(1.1 mL) were added to the reaction mixture, which was refluxed
for 6 h, excess of the solvent was evaporated in vacuo. A precipiꢀ
tate that formed was filtered off, washed with EtOH, and dried.
Recrystallization from the 1,4ꢀdioxane—water solvent mixture
yielded compound 8 (2.0 g, 63%) as light yellow crystals, m.p.
The authors are grateful to Marietta Böhm, Dipl.ꢀIng.,
University of Bayreuth (Germany), Chair of Macromoꢀ
lecular Chemistry 2, for the study of copolymers by GPC.
This work was financially supported by the Russian
Foundation for Basic Research (Project Nos 09ꢀ03ꢀ00408ꢀa
and № 09ꢀ03ꢀ12173ꢀofi_m).
References
1. F. Liang, J. Chen, Ya. Cheng, L. Wang, D. Ma, X. Jing,
F. Wang, J. Mater. Chem., 2003, 13, 1392.
1
188 °C. H NMR (CDCl3), δ: 2.45 (s, 3 H, H(1)); 3.1 (s, 3 H,
Me); 7.35 (s, 4 H, H(2)—H(5)); 7.76 (t, 1 H, H(7), J = 7.6 Hz);
7.93 (t, 1 H, H(8), J = 7.6 Hz); 8.19 (d, 1 H, H(9), J = 8.8 Hz);
8.89 (d, 1 H, H(6), J = 9.0 Hz). Found (%): C, 75.11; H, 5.18;
N, 8.76; O, 10.95. C19H14N2O2. Calculated (%): C, 75.50;
H, 4.63; N, 9.27; O, 10.60.
Synthesis of model compounds 9a—d (general procedure).
A mixture of compound 8 (0.17 g, 0.56 mmol), oꢀDCB (5.3 mL)
and the corresponding aldehyde (0.84 mmol) was heated to boilꢀ
ing, piperidine (1 drop) was added followed by reflux for 4 h.
After cooling, excess of oꢀDCB was evaporated in vacuo. A preꢀ
cipitate that formed was filtered off, dried, and recrystallized
from the 1,4ꢀdioxane—water mixture.
4ꢀ(4ꢀDimethylaminostyryl)ꢀ2ꢀ(pꢀtolyl)pyrrolo[3,4ꢀc]quinoꢀ
lineꢀ1,3ꢀdione (9a). Dark brown crystals. The yield was 61%,
m.p. 262—264 °C. 1H NMR (CDCl3), δ: 2.47 (s, 3 H, H(1));
3.07 (s, 6 H, NMe2); 6.74 (d, 2 H, H(14), H(15), J = 9.0 Hz);
7.38 (s, 4 H, H(2)—H(5)); 7.63—7.69 (m, 3 H, H(7), H(12), H(13));
7.88 (t, 1 H, H(8), J = 7.9 Hz); 8.15—8.21 (m, 2 H, H(9),
H(11)); 8.27 (d, 1 H, H(10), J = 15.9 Hz); 8.83 (d, 1 H, J = 7.6 Hz).
Found (%): C, 76.87; H, 5.98; N, 9.14; O, 8.01. C28H23N3O2.
Calculated (%): C, 77.60; H, 5.31; N, 9.70; O, 7.39.
2. S.ꢀH. Kim, J.ꢀZh. Cui, J.ꢀY. Park, E.ꢀM. Han, S.ꢀM. Park,
Dyes Pigm., 2003, 59, 245.
3. S.ꢀL. Wang, T.ꢀC. Lee, T.ꢀI. Ho, J. Photochem. Photobiol.,
A, 2002, 151, 21.
4. M. Ya. Goikhman, L. I. Subbotina, K. A. Romashkova, N. N.
Smirnov, A. Yu. Ershov, I. V. Gofman, V. A. Lukoshkin,
A. V. Yakimanskii, V. V. Kudryavtsev, Vysokomol. Soedin.,
Ser. A, 2007, 49, 1170 [Polym. Sci., Ser. A (Engl. Transl.),
2007, 49, 773].
5. A. M. Abo El Wafa, S. Okada, H. Nakanishi, Dyes Pigm.,
2006, 69, 239.
6. C. Former, H. Wagner, R. Richert, D. Neher, K. Müllen,
Macromolecules, 1999, 32, 8551.
7. M. J. Banach, M. D. Alexander, S. Caracci, R. A. Vaia,
J. Mater. Chem, 1999, 11, 2554.
8. G. Koeckelberghs, M. Vangheluwe, I. Picard, L. De Groof,
T. Verbiest, A. Persoons, C. Samyn, Macromolecules, 2004,
37, 8530.
9. I. G. VoigtꢀMartin, U. Kolb, H. Kothe, A. V. Yakimansky,
R.ꢀC. Yu, G. N. Matveeva, A. V. Tenkovtsev, Macromol.
Symp., 1999, 146, 163.