Communication
ChemComm
14 M. Winn, J. K. Fyans, Y. Zhuo and J. Micklefield, Nat. Prod. Rep.,
2016, 33, 317–347.
15 (a) C. Milne, A. Powell, J. Jim, M. Al Nakeeb, C. P. Smith and
J. Micklefield, J. Am. Chem. Soc., 2006, 128, 11250–11259; (b) H. Kries,
R. Wachtel, A. Pabst, B. Wanner, D. Niquille and D. Hilvert, Angew.
Chem., Int. Ed., 2014, 53, 10105–10108; (c) M. Cru¨semann, C. Kohlhaasa
and J. Piel, Chem. Sci., 2013, 4, 1041–1045.
16 (a) A. D. Roy, S. Gru¨schow, N. Cairns and R. J. M. Goss, J. Am. Chem. Soc.,
2010, 132, 12243–12245; (b) R. A. Lewis, L. Nunns, J. Thirlway, K. Carroll,
C. P. Smith and J. Micklefield, Chem. Commun., 2011, 47, 1860–1862.
17 (a) R. H. Baltz, P. Brian, V. Miao and S. K. Wrigley, J. Ind. Microbiol.
Biotechnol., 2006, 33, 66–74; (b) K. T. Nguyen, D. Ritz, J. Q. Gu,
D. Alexander, M. Chu, V. Miao, P. Brian and R. H. Baltz, Proc. Natl.
Acad. Sci. U. S. A., 2006, 103, 17462–17467; (c) H. Kries, D. L. Niquille
and D. Hilvert, Chem. Biol., 2015, 22, 640–648.
18 (a) H. B. Bode, D. Reimer, S. W. Fuchs, F. Kirchner, C. Dauth, C. Kegler,
W. Lorenzen, A. O. Brachmann and P. Gru¨n, Chem. – Eur. J., 2012,
18, 2342–2348; (b) H. B. Bode, A. O. Brachmann, K. B. Jadhav,
L. Seyfarth, C. Dauth, S. W. Fuchs, M. Kaiser, N. R. Waterfield,
H. Sack, S. H. Heinemann and H.-D. Arndt, Angew. Chem., Int. Ed.,
2015, 54, 10352–10355.
19 (a) H. D. Mootz, N. Kessler, U. Linne, K. Eppelmann, D. Schwarzer
and M. A. Marahiel, J. Am. Chem. Soc., 2002, 124, 10980–10981;
(b) D. Butz, T. Schmiederer, B. Hadatsch, W. Wohlleben, T. Weber
and R. D. Su¨ssmuth, ChemBioChem, 2008, 9, 1195–1200.
20 (a) K. Qiao, H. Zhou, W. Xu, W. Zhang, N. Garg and Y. Tang, Org.
Lett., 2011, 13, 1758–1761; (b) C. Zhang, L. Kong, Q. Liu, X. Lei,
T. Zhu, J. Yin, B. Lin, Z. Deng and D. You, PLoS One, 2013, 8, e56772;
(c) A. W. Goering, J. Li, R. A. McClure, R. J. Thomson, M. C. Jewett
and N. L. Kelleher, ACS Synth. Biol., 2017, 6, 39–44.
21 (a) L. M. Hicks, M. T. Mazur, L. M. Miller, P. C. Dorrestein,
N. A. Schnarr, C. Khosla and N. L. Kelleher, ChemBioChem, 2006,
7, 904–907; (b) D. Meluzzi, W. H. Zheng, M. Hensler, V. Nizet and
P. C. Dorrestein, Bioorg. Med. Chem. Lett., 2008, 18, 3107–3111.
devising novel chemoenzymatic approaches towards unnatural
peptide production.
In summary, we have herein gathered a first direct view of
substrate processing for an iterative NRPS in vivo through the use
of newly devised nonhydrolysable ‘chain termination’ probes.
Further applications of these tools for the investigation of nonribo-
somal peptide pathways will be reported in due course.
We gratefully acknowledge BBSRC (project grant BB/J007250/1 to
M. T. and MIBTP studentship to D. J. L.); the Erasmus programme
(exchange bursaries to F. G. and O. K.); FP7 (Marie Curie Intraeur-
opean Fellowship to I. W.); the Institute of Advanced Studies at
Warwick (Postdoctoral Fellowship to E. R.); Dr Cleidiane Zampronio
(School of Life Sciences, Warwick) for assistance with LC-HRMSn
Orbitrap Fusion analyses; Dr Lijiang Song for preliminary MS data
acquired on a Bruker MaXis Impact instrument; Prof. Peter F. Leadlay
(Cambridge) for the kind gift of S. lasaliensis ACP12 (S970A); and
COST Action CM1407 for networking funding and opportunities.
Notes and references
1 (a) M. A. Marahiel and L. O. Essen, Methods Enzymol., 2009, 458,
337–351; (b) G. H. Hur, C. R. Vickery and M. D. Burkart, Nat. Prod.
Rep., 2012, 29, 1074–1098.
2 E. A. Felnagle, E. E. Jackson, Y. A. Chan, A. M. Podevels, A. D. Berti, M. D.
McMahon and M. G. Thomas, Mol. Pharmaceutics, 2008, 5, 191–211.
3 (a) F. Rusnak, M. Sakaitani, D. Drueckhammer, J. Reichert and
C. T. Walsh, Biochemistry, 1991, 30, 2916–2927; (b) M. A. Fischbach
and C. T. Walsh, Chem. Rev., 2006, 106, 3468–3496.
¨
4 (a) L. Luo, R. M. Kohli, M. Onishi, U. Linne, M. A. Marahiel and 22 (a) T. Kittila, A. Mollo, L. K. Charkoudian and M. J. Cryle, Angew. Chem.,
C. T. Walsh, Biochemistry, 2002, 41, 9184–9196; (b) S. A. Samel,
P. Czodrowski and L.-O. Essen, Acta Crystallogr., Sect. D: Biol. Crystallogr.,
2014, D70, 1442–1452; (c) W.-H. Chen, K. Li, N. S. Guntaka and
S. D. Bruner, ACS Chem. Biol., 2016, 11, 2293–2303.
Int. Ed., 2016, 55, 9834–9840; (b) E. J. Drake, B. R. Miller, C. Shi,
J. T. Tarrasch, J. A. Sundlov, C. L. Allen, G. Skiniotis, C. C. Aldrick and
A. M. Gulick, Nature, 2016, 529, 235–238; (c) K. Haslinger, M. Peschke,
C. Brieke, E. Maximowitsch and M. J. Cryle, Nature, 2015, 521, 105–109.
5 M. Peschke, K. Haslinger, C. Brieke, J. Reinstein and M. J. Cryle, 23 (a) M. Tosin, D. Spiteller and J. B. Spencer, ChemBioChem, 2009, 10,
J. Am. Chem. Soc., 2016, 138, 6746–6753.
6 B. Bister, D. Bischoff, G. J. Nicholson, S. Stockert, J. Wink, C. Brunati,
1714–1723; (b) M. Tosin, L. Betancor, E. Stephens, W. M. A. Li,
J. B. Spencer and P. F. Leadlay, ChemBioChem, 2010, 11, 539–546.
S. Donadio, S. Pelzer, W. Wohlleben and R. D. Su¨ssmuth, ChemBioChem, 24 (a) M. Tosin, Y. Demydchuk, J. S. Parascandolo, C. Blasco-Per, F. J. Leeper
2003, 7, 658–662.
and P. F. Leadlay, Chem. Commun., 2011, 47, 3460–3462; (b) M. Tosin,
L. Smith and P. F. Leadlay, Angew. Chem., Int. Ed., 2011, 50, 11930–11933;
(c) E. Riva, I. Wilkening, S. Gazzola, W. M. A. Li, L. Smith, P. F. Leadlay
and M. Tosin, Angew. Chem., Int. Ed., 2014, 53, 11944–11949.
7 T. L. Li, F. Huang, S. F. Haydock, T. Mironenko, P. F. Leadlay and
J. B. Spencer, Chem. Biol., 2004, 11, 107–119.
8 T. Stachelhaus, H. D. Mootz and M. A. Marahiel, Chem. Biol., 1999, 6,
493–505.
9 (a) T. A. Keating, C. G. Marshall, C. T. Walsh and A. E. Keating, Nat.
Struct. Biol., 2002, 9, 522–526; (b) S. Lautru and G. L. Challis, Microbiology,
2004, 150, 1629–1636; (c) K. Bloudoff, D. Rodionov and T. M. Schmeing,
J. Mol. Biol., 2013, 425, 3137–3150; (d) K. Bloudoff, D. A. Alonzo and
T. M. Schmeing, Cell Chem. Biol., 2016, 23, 331–339.
10 (a) S. D. Bruner, T. Weber, R. M. Kohli, D. Schwarzer, M. A. Marahiel, C. T.
Walsh and M. T. Stubbs, Structure, 2002, 10, 301–310; (b) M. E. Horsman,
T. P. A. Hari and C. N. Boddy, Nat. Prod. Rep., 2016, 33, 183–202.
11 (a) N. Gaitatzis, B. Kunze and R. Mu¨ller, Proc. Natl. Acad. Sci. U. S. A.,
25 (a) J. S. Parascandolo, J. Havemann, H. K. Potter, F. Huang, E. Riva,
J. Connolly, I. Wilkening, L. Song, P. F. Leadlay and M. Tosin, Angew.
Chem., Int. Ed., 2016, 55, 3463–3467; (b) H. Kage, E. Riva, J. S. Parascandolo,
M. F. Kreutzer, M. Tosin and M. Nett, Org. Biomol. Chem., 2015, 13,
11414–11417; (c) J. Havemann, M. E. Yurkovich, R. Jenkins, S. Harringer,
W. Tao, S. Wen, Y. Sun, P. F. Leadlay and M. Tosin, Chem. Commun., 2017,
53, 1912–1915; (d) M. E. Yurkovich, R. Jenkins, Y. Sun, M. Tosin and
P. F. Leadlay, Chem. Commun., 2017, 53, 2182–2185.
26 I. Wilkening, S. Gazzola, E. Riva, J. S. Parascandolo, L. Song and
M. Tosin, Chem. Commun., 2016, 52, 10392–10395.
2001, 98, 11136–11141; (b) A. Chhabra, A. S. Haque, R. K. Pal, A. Goyal, 27 (a) M. Sato, T. Nakazawa, Y. Tsunematsu, K. Hotta and K. Watanabe,
R. Rai, S. Joshi, S. Panjikar, S. Pasha, R. Sankaranarayanan and R. S.
Gokhalea, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 5681–5686.
12 S. C. Wenzel, P. Meiser, T. M. Binz, T. Mahmud and R. Mu¨ller,
Angew. Chem., Int. Ed., 2006, 45, 2296–2301.
Curr. Opin. Chem. Biol., 2013, 17, 537–545; (b) K. Watanabe, K. Hotta,
A. P. Praseuth, K. Koketsu, A. Migita, C. N. Boddy, C. C. C. Wang,
H. Oguri and H. Oikawa, Nat. Chem. Biol., 2006, 2, 423–428.
28 D. E. Ehmann, J. W. Trauger, T. Stachelhaus and C. T. Walsh, Chem.
Biol., 2000, 7, 765–772.
ˇ
´
13 M. Juguet, S. Lautru, F.-X. Francou, S. Nezbedova, P. Leblond,
M. Gondry and J.-L. Pernodet, Chem. Biol., 2009, 16, 421–431.
29 R. H. Wills, M. Tosin and P. B. O’Connor, Anal. Chem., 2012, 84, 8863–8870.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017