7.2), 63.56 (d, OCH2 phosphonate, JC-P 7.2), 120.76 (d, C-2,
JC-P 9), 131.57 (C-1), 168.74 (d, CO ester, JC-P 5.4), 176.56 (br
s, CO imide), 177.43 (br s, CO imide); trans isomer 4b (minor):
δH (500 MHz) 1.17–1.36 (t, 9H, CH3 ester ϩ CH3 phosphon-
ate), 2.14–2.35 (m, H-6 ϩ H-6Ј), 2.56 (m, H-5 ϩ H-5Ј), 2.68
(br s, CH2 imide), 3.94–4.27 (q, 6H, OCH2 ester ϩ OCH2
phosphonate), 5.30–5.40 (m, H-2 ϩ H-3), 6.02 (m, H-1);
δC(125 MHz) 13.64 (CH3 ester), 16.13 (d, CH3 phosphonate,
JC-P 7.2), 16.23 (d, CH3 phosphonate, JC-P 7.2), 22.15 (d, C-6,
JC-P 5.4), 24.14 (d, C-5, JC-P 3.6), 27.86 (CH2 imide), 46.40
(C-3), 50.23 (d, C-4, JC-P 131.1), 61.48 (OCH2 ester), 62.66
(d, OCH2 phosphonate, JC-P 7.2), 63.33 (d, OCH2 phosphonate,
JC-P 7.2), 121.62 (d, C-2, JC-P 5.4), 130.58 (C-1), 168.84 (d, CO
ester, JC-P 5.4) 176.27 (CO imide). MS m/z(EI) 387 (M)
(Found: C, 52.69; H, 6.88; N, 3.35. Calc. for C17H26NO7P: C,
52.71; H, 6.76; N, 3.61%).
Acknowledgements
This work was generously supported by the Fonds National de
la Recherche Scientifique (FNRS, Belgium), the Fonds du
Développement Scientifique (FDS, UCL, Belgium), and the
Institut de Recherches Servier (Suresnes, France). N.D. and
J.M.-B. thank Dr A. Cordi for stimulating discussions.
References
1 Comprehensive Organic Synthesis, Volume 5, Combining C-Cπ
Bonds, ed. B. M. Trost, I. Fleming and L. A. Paquette, Pergamon
Press, Oxford, 1991, pp. 315–512.
2 P. W. Hickmott, Tetrahedron, 1984, 40, 2989.
3 R. L. Snowdon, Tetrahedron Lett., 1984, 25, 3835.
4 W. Oppolzer and E. Flaskamp, Helv. Chim. Acta, 1977, 60, 204.
5 S. Masamune, L. A. Reed III, J. T. Davis and W. Choy, J. Org.
Chem., 1983, 48, 4441.
6 W. Oppolzer and C. Robbiani, Helv. Chim. Acta, 1983, 66, 1119.
7 T.-C. Wu and K. N. Houk, Tetrahedron Lett., 1985, 26, 2293.
8 S. Handa, K. Jones and C. G. Newton, J. Chem. Soc., Chem.
Commun., 1986, 1797.
9 S. F. Martin and W. Li, J. Org. Chem., 1989, 54, 265.
10 A. Franz, P.-Y. Eshler, M. Tharin, H. Stoeckli-Evans and R. Neier,
Synthesis, 1996, 1239.
11 W. Oppolzer, L. Bieber and E. Francotte, Tetrahedron Lett., 1979,
981.
12 L. Overman, J. Org. Chem., 1978, 43, 2164.
13 C. A. Zegga and M. B. Smith, J. Org. Chem., 1988, 53, 1161.
14 W. Oppolzer, L. Bieber and E. Francotte, Tetrahedron Lett., 1979,
4537.
15 M. Kakushima, Can. J. Chem., 1979, 57, 2564.
16 S. Danishefsky and F. M. Hershenson, J. Org. Chem., 1979, 44,
1180.
17 L. E. Overman and P. J. Jessup, J. Am. Chem. Soc., 1978, 100, 5179.
18 L. E. Overman, G. F. Taylor, K. N. Houk and L. N. Domelsmith,
J. Am. Chem. Soc., 1978, 100, 3182.
19 A. Terada and K. Murata, Bull. Chem. Soc. Jpn., 1967, 40, 1644.
20 A. Terada and K. Murata, Nippon Kagaku Zasshi, 1962, 83, 490.
21 W. M. Daniewski and C. E. Griffin, J. Org. Chem., 1966, 31, 3236.
22 M. Maffei and G. Buono, New. J. Chem., 1988, 12, 923.
23 S. D. Darling and S. J. Brandes, J. Org. Chem., 1982, 47, 1413.
24 C. K. McClure and K. B. Hansen, Tetrahedron Lett., 1996, 37, 2149.
25 C. K. McClure, K. J. Herzog and M. D. Bruch, Tetrahedron Lett.,
1996, 37, 2153.
26 M. F. Semmelhack, J. C. Tomesch, M. Czarny and S. Boettger,
J. Org. Chem., 1978, 43, 125.
27 W. D. S. Motherwell and W. Clegg, PLUTO, Program for Plotting
Molecular and Crystal Structures, University of Cambridge, 1978.
28 F. H. Allen, O. Kennard and R. Taylor, Acc. Chem. Res., 1993, 16,
146.
29 W. L. Duax, C. M. Weeks and D. C. Rohrer, Top. Stereochem., 1976,
9, 271.
30 E. Breuer, M. Safadi, M. Chorev and D. Gibson, J. Org. Chem.,
1990, 55, 6147.
31 P. Vogel, A. Guy, Y. Langlois, A. Lubineau, D. Grierson, R. Bloch
and J. Cossy, Actualité Chimique, December 1994, p. 21.
32 R. Sustmann, S. Tappanchai and H. Bandamann, J. Am. Chem.
Soc., 1996, 118, 1255.
33 R. Sustmann and W. Sicking, J. Am. Chem. Soc., 1996, 118, 12562.
34 R. A. Firestone, Tetrahedron, 1996, 52, 14459.
35 G. M. Sheldrick, SHELXS86, in Crystallographic Computing 3, ed.
G. M. Sheldrick, C. Kruger and R. Goddard, Oxford, 1985, pp.
175–189.
X-Ray analysis and structure determination
Crystallographic data for 3a: C14H20NO7P, Mr = 345.28, tri-
¯
clinic, P1, a = 8.688(2), b = 8.907(1), c = 12.424(1) Å,
α = 88.71(2), β = 75.73(2), γ= 61.97(2)Њ, V = 817.6(2) Å3, Z = 2,
Dc = 1.403 g cmϪ3. Parallelipiped crystal with approximate
dimensions 0.4 × 0.3 × 0.3 mm. Lattice parameters were refined
using 30 reflections in the range 5 р 2θ р 25Њ. Huber four-circle
diffractometer, graphite monochromatized Mo-Kα radiation
(λ = 0.71069 Å). 3210 independent reflections with sin θ/λ
р 0.62 ÅϪ1; 0 р h р 10, Ϫ9 р k р 10, Ϫ14 р l р 15, 2471
with I у 2(I). A standard reflection (0 Ϫ2 Ϫ1) was checked
every 50 reflections; no significant deviation was observed. The
structure was solved by direct methods using SHELXS86.35 All
H atoms, except those of one methyl group, were located from
difference Fourier synthesis; the H atoms of methyl C21 were
calculated with AFIX. Anisotropic least squares refinement
(SHELXL93)36 using F2 values; H isotropic with a common
refined thermal parameter (U = 0.079 Å2). 279 parameters.
w = 1/σ2(Fo)2 ϩ 0.078P2 ϩ 0.03P). Two positions appeared for
the methoxy group O20᎐C21; the occupation factors of the two
positions converge to 0.78 (A) and 0.22 (B) at the end of the
refinement. Final R indices; R = 0.046, R (all data) = 0.059,
wR2 = 0.12, S = 1.07. Final maximum shift to error = 0.001.
Maximum and minimum heights in final Fourier syn-
thesis = 0.44 and Ϫ0.30 e ÅϪ3. Atomic scattering factors from
ref. 37.†
Theoretical analysis
The molecules and van der Waals complexes under investiga-
tion have been studied at the restricted Hartree-Fock (RHF )
level using the 6-31G(d,p) basis set of Hariharan and Pople.38
Such a basis gives enough flexibility to the wavefunction to
ensure a balanced behaviour of the phosphorus atom. The
geometric structures obtained in this paper result from a full
geometry optimization of all the considered parameters in the
3N Ϫ 6 internal coordinates space, thus relaxing any a priori
symmetry constraint. A conventional gradient technique was
used for the search of the optimal structure. The analytical
computation of the first and second derivatives of the energy
hypersurface guarantees the good behaviour of the extremum
found. All the computations reported in this paper were
obtained using the GAUSSIAN series of programs.39 Due to
the presence of labile intermolecular parameters, the potential
energy surface of the complexes is very flat. This leads to some
looseness of the obtained structures which, nevertheless, have
the properties of a true minimum.
36 G. M. Sheldrick, SHELXL93, Program for the Refinement of
Crystal Structures, University of Göttingen, Germany, 1993.
37 International Tables for X-Ray Crystallography, The Kynoch Press,
Birmingham, 1974, vol. IV.
38 C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213.
39 J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W.
Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb,
E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari,
J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees,
J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN 92, Revision C,
Gaussian, Inc., Pittsburgh PA, 1992.
† Atomic co-ordinates, thermal parameters and bond lengths and
angles have been deposited at the Cambridge Crystallographic Data
Centre (CCDC). See ‘Instructions for Authors’, J. Chem. Soc., Perkin
Trans 2, 1997, Issue 1. Any request to the CCDC for this material
should quote the full literature citation and the reference number
188/89.
Paper 7/02324C
Received 4th April 1997
Accepted 23rd June 1997
1968
J. Chem. Soc., Perkin Trans. 2, 1997