10.1002/cplu.202000012
ChemPlusChem
FULL PAPER
squares against F2 with all reflections using Shelxl2016[33] using the
graphical interface Shelxle.[34] Crystallographic, data collection and
structure refinement details are presented in Table S2 in the ESI.
Complete crystallographic data, in CIF format, have been deposited with
the Cambridge Crystallographic Data Centre. CCDC 1975219
Matile, Angew. Chem. Int. Ed. 2011, 50, 11675–11678. c) J. Mareda, S.
Matile, Chem. Eur. J. 2009, 15, 28–37. d) N. H. Evans, P. D. Beer, Angew.
Chem. Int. Ed. 2014, 53, 11716-11754. e) Y. Zhao, Y. Cotelle, L. Liu, J.
López-Andarias, A.-B. Bornhof, M. Akamatsu, N. Sakai, S. Matile, Acc.
Chem. Res. 2018, 51, 2255–2263.
(I4Q·((Pr4N)Br)·3.5CH2Cl2),
1975220
(I4Q·2((Pr4N)Br)),
1975221
[6] a) P. Politzer, K. E. Riley, F. A. Bulat, J. S. Murray, Comput. Theor. Chem.
2012, 998, 2–8. b) P. Politzer, J. S. Murray, T. Clark, G. Resnati, Phys.
Chem. Chem. Phys. 2017, 19, 32166–32178. c) P. Politzer, J. S. Murray,
Crystals 2019, 9, 165.
(3I4Q·2((Bu4N)I)) and 1975222 (4.5I4Q·3((Pr4N)I)·CH2Cl2) contain the
supplementary crystallographic data for this paper. These data can be
[7] a) A. Bauzá, T. J. Mooibroek, A. Frontera, ChemPhysChem 2015, 16, 2496
– 2517. b) P. Politzer, J. S. Murray, J. Comp. Chem. 2017, 39, 464 - 471.
[8] a) X. Q. Yan, X. R. Zhao, H. Wang, W. J. Jin, J. Phys. Chem. B 2014, 118,
1080–1087. b) R. Shukla, I. Khan, A. Ibrar, J. Simpson, D. Chopra,
CrystEngComm 2017, 19, 3485–3498. c) H. I. Althagbi, D. R. Bernstein, W.
C. Crombie, J. R. Lane, D. K. McQuiston, M. A. Oosterwijk, G. C. Saunders,
W. Zou, J. Fluorine Chem. 2018, 206, 61–71. d) N. Schulz, P. Sokkar, E.
Engelage, S. Schindler, M. Erdelyi, E. Sanchez-Garcia and S. M. Huber,
Chem. Eur. J. 2018, 24, 3464–3473. e) M. G. Sarwar, B. Dragisic, S. Sagoo,
M. S. Taylor, Angew. Chem. Int. Ed. 2010, 49, 1674−1677.
Geometries of the complexes were optimized without constraints via DFT
calculations with the M06-2X functional[21] and def2tzvpp basis set using
the Gaussian 09 suite of programs.[35] The absence of imaginary
frequencies confirmed that the optimized structures represent true
minima. .Calculations in CH3CN were carried out using a polarizable
continuum model.[23] Values of E were determined as: E = Ec – (EBQ
+
EX), where Ec, EBQ and EX are sums of the electronic and ZPE of the
optimized complex, BQ and anion.[36] UV-Vis spectra were obtained via
TD-DFT calculations. Electrostatic potentials were calculated on 0.001
electrons bohr-3 molecular surfaces. AIM and NCI analyses were
performed with Multiwfn using wfn files generated by Gaussian 09.[37]
Characteristics of the complexes are listed in the ESI.
[9] a) M. Giese, M. Albrecht, K. Rissanen, Chem. Rev. 2015, 115, 8867–8895.
b) H. Wang, W. Wang, W. J. Jin, Chem. Rev. 2016, 116, 5072–5104.
[10] a) C. Estarellas, A. Frontera, D. Quiñonero, P. M. Deyà, ChemPhysChem
2011, 12, 2742–2750. b) Y. Chen, J. Phys. Chem. A 2013, 117, 8081–8090.
c) M. M. Naseer, A. Bauzá, H. Alnasr, K. Jurkschat, A. Frontera,
CrystEngComm 2018, 20, 3251–3257. d) F.-L. Yang, X. Yang, R.-Z. Wu,
C.-X. Yan, F. Yang, W. Ye, L.-W. Zhang, P.-P. Zhou, Phys. Chem. Chem.
Phys. 2018, 20, 11386–11395. e) Y. Lu, Y. Liu, H. Li, X. Zhu, H. Liu, W.
Zhu, J. Phys. Chem. A 2012, 116, 2591–2597.
Supporting Information. Details of calculations of formation constants,
crystallographic analysis and computations. This material is available free
of charge via the Internet at http:.
Acknowledgments
[11] a) A. A. Eliseeva, D. M. Ivanov, A. S. Novikov, V. Y. Kukushkin,
CrystEngComm 2019, 21, 616–628. b) P. Metrangolo, F. Meyer, T. Pilati,
G. Resnati, G. Terraneo, Chem. Commun. 2008, 1635-1637. c) X.-H. Ding,
C.-J. Ou, S. Wang, L.-H. Xie, J.-Y. Lin, J.-P.Wang, W. Huang,
CrystEngComm 2017, 19, 5504-5521. d) P. Cauliez, V. Polo, T. Roisnel, R.
Llusar, M. Fourmigué, CrystEngComm 2010, 12, 558-566. e) J. Lieffrig, A.
G. Niassy, O. Jeannin, M. Fourmigué, CrystEngComm 2015,17, 50-57. f)
S. Triguero, R. Llusar, V. Polo, M. Fourmigue, Cryst. Growth Des. 2008, 8,
2241-2247. g) A. Abate, J. Martí-Rujas, P. Metrangolo, T. Pilati, G.Resnati,
G. Terraneo, Cryst. Growth Des. 2011, 11, 4220-4226. h) G. Cavallo, S.
Biella, J. Lü, P. Metrangolo, T. Pilati, G. Resnati, G. Terraneo, J. Fluor
Chem. 2010, 131, 1165-1172. i) M. C. Pfrunder, A. S. Micallef, L. Rintoul,
D. P. Arnold, K. J. P. Davy, J. McMurtrie, Cryst. Growth Des. 2012, 12, 714-
724. j) M. C. Pfrunder, A. S. Micallef, L. Rintoul, D. P. Arnold, K. J. P. Davy,
J. McMurtrie, Cryst. Growth Des. 2014, 14, 6041-6047. k) J. Grebe, G.
Geiseler, K. Harms, K. Dehnicke, J. Naturforsch, B: Chem. Sci. 1999, 54,
77. l) J. Viger-Gravel, S. Leclerc, I. Korobkov, D. L. Bryce, CrystEngComm
2013,15, 3168-3177. m) K. Kobra, S. ODonnell, A. Ferrari, C. D. McMillen,
W. T. Pennington, New J. Chem. 2018, 42, 10518-10528.
We thank the National Science Foundation for the financial
support of this work (grant CHE-1607746). X-ray structural
measurements were supported by the National Science
Foundation through the Major Research Instrumentation Program
under Grant No. CHE-1625543 (funding for the single crystal X-
ray diffractometer).
Keywords: Anion- interaction • Halogen bonding • Halides •
Quinones • Supramolecular chemistry
[1] a) P. Gale, J. Steed, Eds. Supramolecular Chemistry: From Molecules to
Nanomaterials. Wiley VCH, Chichester, UK, 2012. b) F. Biedermann, H.-J.
Schneider, Chem. Rev. 2016, 116, 5216–5300. c) P. Molina, F. Zapata, A.
Caballero, Chem. Rev. 2017, 117, 9907–9972. d) S. Benz, A. I. Poblador‐
Bahamonde, N. Low‐Ders, S. Matile, Angew. Chem. Int. Ed. 2018, 57,
5408–5412. e) A. L. Vogel, P. Wonner, S. M. Huber, Angew. Chem. Int. Ed.
2019, 58, 1880–1891. f) A. Bauzá, S. K. Seth, A. Frontera, Coord. Chem,
Rev. 2019, 384, 107–125. g) M. Fourmigué, A. Dhaka, Coord. Chem. Rev.
2020, 403, 213084.
[12] a) G. Goor, J. Glenneberg, S. Jacobi, Ullmann’s Encyclopedia of Industrial
Chemistry; Wiley-VCH: Weinheim, 2012. b) D. R. Buckle, Chloranil. In
Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Inc.:
New York, 2001.
[2] a) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, A. G. Resnati,
G. Terraneo, Chem. Rev. 2016, 116, 2478–2601. b) L. C. Gilday, S.W.
Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney, P. D. Beer, Chem.
Rev. 2015, 115, 7118–7195. c) G. Resnati, W.T. Pennington, New J. Chem.
2018, 42, 10461-10462.
[13] a) M. Cheng, X. Yang, F. Zhang, J. Zhao, L. Sun, Angew. Chem. Int. Ed.
2012, 51, 9896-9899. b) B. Rausch, M. D. Symes, L.J. Cronin, J. Am. Chem.
Soc. 2013, 135, 13656-13659. c) K. Ohkubo, K. Hirose, S. Fukuzumi,
Chem. Eur. J. 2015, 21, 2855–2861. d) K. Ohkubo, A. Fujimoto, S.
Fukuzumi, J. Am. Chem. Soc. 2013, 135, 5368–5371.
[3] a) A. Frontera, P. Gamez, M. Mascal, T. J. Mooibroek, J. Reedijk, Angew.
Chem. Int. Ed. 2011, 50, 9564-9583. b) O. B. Berryman, V. S. Bryantsev,
D. P. Stay, D. W. Johnson, B. P. Hay, J. Am. Chem. Soc. 2007, 129, 48–
58. c) B. L. Schottel, H. T. Chifotides, K. R. Dunbar, Chem. Soc. Rev. 2008,
37, 68–83. d) H. T. Chifotides, K. R. Dunbar, Acc. Chem. Res.
2013, 46, 894-906. e) D.-X. Wang, M.-X. Wang, J. Am. Chem. Soc. 2013,
135, 892–897. f) P. Ballester, Acc. Chem. Res. 2013, 46, 874–884.
[4] a) A. Priimagi, G. Cavallo, P. Metrangolo, G. Resnati, Acc. Chem. Res.
2013, 46, 2686-95. b) W. T. Pennington, G. Resnati, M. S. Taylor,
CrystEngComm 2013, 15, 3057. c) C. J. Massena, D. A. Decato, O. B.
Berryman, Angew. Chem. Int. Ed. 2018, 57, 16109–16113. d) R. L. Sutar,
S.M. Huber, ACS Catal. 2019, 9, 9622–9639.
[14] Y. S. Rosokha, S. V. Lindeman, S. V. Rosokha, J.K. Kochi, Angew. Chem.
Int. Ed. 2004, 43, 4650-4652.
[15] S. Kepler, M. Zeller, S.V. Rosokha, J. Am. Chem. Soc. 2019, 141, 9338 -
9348.
[16] K. Molčanov, G. Mali, J. Grdadolnik, J. Stare, V. Stilinović, B. Kojić-Prodić,
Cryst. Growth Des. 2018, 18, 5182–5193.
[17] Note that this work was focused on the complexes with I-, Br- and Cl- anions
since the previous study showed that interaction of p-benzoquinones with
fluoride anions resulted in formation of covalently-bonded -complexes.[15]
[18] While the previous studies demonstrated that formation of -complexes
followed by substitution and/or redox-reactions hinder experimental studies
of anion- or XB complexes of benzoquinones with fluoride anions,[15] the
results of the current work revealed similar problems in the system of I4Q
[5] a) D. Quinonero, A. Frontera, P. M. Deya, In Anion Coordination Chemistry,
K. Bowman-James, A. Bianchi, E. Garcia-Espana, Eds. 2012, p. 321-361.
b) A. Vargas Jentzsch, D. Emery, J. Mareda, P. Metrangolo, G. Resnati, S.
7
This article is protected by copyright. All rights reserved.