2
820
T. Okino et al. / Tetrahedron Letters 44 (2003) 2817–2821
In summary, thiourea-catalyzed nucleophilic addition
to various nitrones were developed. The reactions of
both TMSCN and ketene silyl acetal to nitrones were
greatly accelerated by the hydrogen bonding between
ureas and nitrones, and the Lewis acid-like activation
mechanism was supported by H and C NMR analy-
sis. Moreover, the urea employed could be recovered
quantitatively and the reuse of the catalyst 4c was also
demonstrated. Now we are engaged in an asymmetric
version of these reactions catalyzed by chiral thiourea
derivatives.
Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc.
2002, 124, 1172–1173; (e) Barrett, A. G. M.; Cook, A. S.;
Kamimura, A. Chem. Commun. 1998, 2533–2534; (f)
Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.;
Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219–
10220; (g) Enders, D.; Kallfass, U. Angew. Chem., Int.
Ed. 2002, 41, 1743–1745; (h) Kerr, M. S.; Read de Alaniz,
J.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298–10299.
5. Curran, D. P.; Kuo, L. H. J. Org. Chem. 1994, 59,
3259–3261.
1
13
6. Curran, D. P.; Kuo, L. H. Tetrahedron Lett. 1995, 37,
6647–6650.
7. Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217–
220.
Acknowledgements
8
. During our investigation, Jacobsen et al. reported asym-
metric catalytic addition to imines with HCN or ketene
silyl acetals. Very recently, Schreiner et al. also revealed
urea catalyzed 1,3-dipolar cycloaddition with nitrone but
the effect was small. See: (a) Vachal, P.; Jacobsen, E. N.
J. Am. Chem. Soc. 2002, 124, 10012–10014; (b) Wenzel,
A. G,; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124,
This research was supported by grants from the
NOVARTIS Foundation (Japan) for the promotion of
Science and Grant-in-Aid for Scientific Research (C)
from the Ministry of Education, Science, Sports, and
Culture, Japan.
12964–12965; (c) Wittkopp, A.; Schreiner, P. R. Chem.
References
Eur. J. 2003, 9, 407–414.
9
. (a) Murahashi, S.; Imada, Y.; Kawakami, T.; Harada,
K.; Yonemushi, Y.; Tomita, N. J. Am. Chem. Soc. 2002,
124, 2888–2889; (b) Ohtake, H.; Imada, Y.; Murahashi,
S. J. Org. Chem. 1999, 64, 3790–3791; (c) Ukaji, Y.;
Yoshida, Y.; Inomata, K. Tetrahedron: Asymmetry 2000,
11, 733–736; (d) Kita, Y.; Itoh, F.; Tamura, O.; Ke, Y.
Y.; Tamura, Y. Tetrahedron Lett. 1987, 28, 1431–1434.
10. Etter, M. C.; Urba n˜ czyk-Lipkowska, Z.; Zia-Ebrahimi,
M.; Panunto, T. W. J. Am. Chem. Soc. 1990, 112, 8415–
8426.
1
. (a) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am.
Chem. Soc. 2000, 122, 2395–2396; (b) Sakthivel, K.;
Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc.
2
001, 123, 5260–5261; (c) Cordova, A.; Notz, W.; Zhong,
G.; Betancort, J. M.; Barbas, C. F., III J. Am. Chem.
Soc. 2002, 124, 1842–1843; (d) Cordova, A.; Watanabe,
S.; Tanaka, F.; Notz, W.; Barbas, C. F., III J. Am. Chem.
Soc. 2002, 124, 1866–1867; (e) Northrup, A. B.; MacMil-
lan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798–6799.
. (a) Kobayashi, S.; Nishio, K. Tetrahedron Lett. 1993, 34,
2
11. Murahashi, S.; Mitsui, H.; Shiota, T.; Tsuda, T.; Watan-
abe, S. J. Org. Chem. 1990, 55, 1736–1744.
3
453–3456; (b) Denmark, S. E.; Coe, D. M.; Pratt, N. E.;
Griedel, B. D. J. Org. Chem. 1994, 59, 6161–6163; (c)
Denmark, S. E.; Wynn, T. J. Am. Chem. Soc. 2001, 123,
12. (a) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T.
Synlett 2000, 442–454; (b) Merino, P.; Lanaspa, A.; Mer-
chan, F. L.; Tejero, T. J. Org. Chem. 1996, 61, 9028–
9032; (c) Merchan, F. L.; Merino, P.; Tejero, T.
Tetrahedron Lett. 1995, 36, 6949–6952.
6
199–6200; (d) Denmark, S. E.; Stavenger, R. A. Acc.
Chem. Res. 2000, 33, 432–440; (e) Nakajima, M.; Saito,
M.; Shiro, M.; Hashimoto, S.-i. J. Am. Chem. Soc. 1998,
1
20, 6419–6420.
13. Mikami, K.; Matsumoto, S.; Ishida, A.; Takamuku, S.;
Suenobu, T.; Fukuzumi, S. J. Am. Chem. Soc. 1995, 117,
11134–11141.
3
. (a) Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. J. Am.
Chem. Soc. 1984, 106, 446–447; (b) O’Donnell, M. J.;
Bennett, W. D.; Wu, S. J. Am. Chem. Soc. 1989, 111,
2
3
14. Experimental procedure: Under an argon atmosphere, to
a solution of 3,4-dihydroisoquinoline-N-oxide 1f (20.9
mg, 0.142 mmol) and bis-(3,5-bis-trifluoromethyl-
phenyl)urea 4c (0.5 equiv., 35.5 mg) in dry CH Cl (0.71
353–2355; (c) Nelson, A. Angew. Chem., Int. Ed. 1999,
8, 1583–1585; (d) Ooi, T.; Kameda, M.; Maruoka, K. J.
Am. Chem. Soc. 1999, 121, 6519–6520; (e) Ooi, T.;
Kameda, M.; Tannai, H.; Maruoka, K. Tetrahedron Lett.
2
2
ml) was added 1-methoxy-2-methyl-1-(trimethylsily-
loxy)propene 5c (3.0 equiv., 0.088 ml) at rt. The reaction
mixture was stirred 1.5 h and then 0.3 M HCl in MeOH
(0.25 ml) was added. After desilylation was completed,
K CO (38.2 mg) was added to convert hydroxylamine to
2
000, 41, 8339–8342; (f) Ooi, T.; Takeuchi, M.; Kameda,
M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228–
5
2
229; (g) Ooi, T.; Doda, K.; Maruoka, K. Org. Lett.
001, 3, 1273–1276; (h) Ooi, T.; Takahashi, M.; Doda,
2
3
K.; Maruoka, K. J. Am. Chem. Soc. 2002, 124, 7640–
641; (i) Kita, T.; Georgieva, A.; Hashimoto, Y.; Nakata,
T.; Nagasawa, K. Angew. Chem., Int. Ed. 2002, 41,
832–2834; (j) Ishikawa, T.; Araki, Y.; Kumamoto, T.;
Seki, H.; Fukuda, K.; Isobe, T. Chem. Commun. 2001,
45–246.
. (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2000, 122, 4243–4244; (b) Jen, W. S.;
Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2000, 122, 9874–9875; (c) Paras, N. A.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2001, 123, 4370–4371; (d)
cyclic compound. The reaction mixture was diluted with
CHCl and saturated NH Cl aq. The organic layer was
separated and the aqueous layer was extracted with
7
3
4
2
CHCl . The combined organic extracts was dried over
3
Na SO . Evaporation of solvents and purification of the
2
4
2
residual oil by column chromatography on silica gel
(ether/hexane=1/3) gave the desired product (24.8 mg,
80% yield) as white solid. An analytical sample was
4
prepared by recrystalization from hexane. Mp 96–97°C
1
(hexane); H NMR (500 MHz, CDCl ): l 7.26–7.23
3
(m, 2H), 7.18 (dd, J=3.9, 5.2 Hz, 1H), 7.09 (dd, J=3.9,