ChemComm
Communication
Am(III) was observed (DAm = 100) (Fig. 8) to those found in 7a and
7b but, the D value for Eu(III) was approximately one order of
magnitude lower than that of 7a, and the resulting separation
factor (SFAm/Eu = ca. 800 at 4 M HNO3) was superior to those
observed for 7a and 7b.
In conclusion, we have reported the synthesis, lanthanide specia-
tion and Am(III)–Eu(III) solvent extraction properties of C5-BTPhen
ligands with bromine substitution at the 5 or 5,6-positions of the
1,10-phenanthroline moiety. The presence of bromine did not affect
the capacity of the ligands to extract Am(III) but decreased the
extraction of Eu(III) from 4 M HNO3 with the result that the SFAm/Eu
ratios were substantially greater than is the case with C5-BTPhen.
The Br atoms inductively withdraw electron density from the rings
and we conclude that this reduces the electron donating capacity of
the phenanthroline nitrogens making the ligand less effective for
complexing with lanthanides.
Fig. 6 Extraction of Am(III) and Eu(III) by C5-BTPhen 7a in 1-octanol as a function
of nitric acid concentration.
The authors would like to acknowledge the EPSRC, MBase
and Actinet-I3 for financial support. Use of the Chemical
Analysis Facility (CAF) at the University of Reading is gratefully
acknowledged.
Notes and references
1 F. W. Lewis, L. M. Harwood, M. J. Hudson, M. G. Drew, J. F. Desreux,
G. Vidick, N. Bouslimani, G. Modolo, A. Wilden, M. Sypula, T. H. Vu
and J. P. Simonin, J. Am. Chem. Soc., 2011, 133, 13093–13102.
2 F. W. Lewis, M. J. Hudson and L. M. Harwood, Synlett, 2011,
2609–2632.
3 F. W. Lewis, L. M. Harwood, M. J. Hudson, M. G. B. Drew, A. Wilden,
M. Sypula, G. Modolo, T.-H. Vu, J.-P. Simonin, G. Vidick,
N. Bouslimani and J. F. Desreux, Procedia Chem., 2012, 7, 231–238.
4 J. M. Mckibben, Radiochim. Acta, 1984, 36, 3.
Fig. 7 Extraction of Am(III) and Eu(III) by BrC5-BTPhen 7b in 1-octanol as a
function of nitric acid concentration.
5 D. D. Sood and S. K. Patil, J. Radioanal. Nucl. Chem., 1996, 203, 547.
6 M. Weigl, A. Geist, U. Mu¨llich and K. Gompper, Solvent Extr. Ion
Exch., 2006, 24, 845–860.
7 M. Nilsson, C. Ekberg, M. Foreman, M. Hudson, J. O. Liljenzin,
G. Modolo and G. Skarnemark, Solvent Extr. Ion Exch., 2006, 24, 823–843.
´
´
8 E. Aneheim, B. Gru¨ner, C. Ekberg, M. R. S. Foreman, Z. Hajkova,
¨
¨
E. Lofstrom-Engdahl, M. G. B. Drew and M. J. Hudson, Polyhedron,
2013, 50, 154–163.
9 D. Magnusson, B. Christiansen, M. R. S. Foreman, A. Geist,
J. P. Glatz, R. Malmbeck, G. Modolo, D. Serrano-Purroy and
C. Sorel, Solvent Extr. Ion Exch., 2009, 27, 97–106.
10 M. J. Hudson, L. M. Harwood, D. M. Laventine and F. W. Lewis,
Inorg. Chem., 2013, 52, 3414–3428.
11 F. W. Lewis, L. M. Harwood, M. J. Hudson, M. G. B. Drew,
V. Hubscher-Bruder, V. Videva, F. Arnaud-Neu, K. Stamberg and
S. Vyas, Inorg. Chem., 2013, 52, 4993–5005.
Fig. 8 Extraction of Am(III) and Eu(III) by Br2C5-BTPhen 7c in 1-octanol as a
function of nitric acid concentration.
12 F. W. Lewis, L. M. Harwood, M. J. Hudson, M. G. B. Drew, M. Sypula,
G. Modolo, D. Whittaker, C. A. Sharrad, V. Videva, V. Hubscher-
Bruder and F. Arnaud-Neu, Dalton Trans., 2012, 41, 9209–9219.
13 D. M. Laventine, A. Afsar, M. J. Hudson and L. M. Harwood,
Heterocycles, 2012, 86, 1419–1429.
function of the nitric acid concentration of the aqueous phase
are shown in Fig. 6.
14 K. L. Nash, Handbook on the Physics and Chemistry of Rare Earths,
Elsevier Science, Amsterdam, 1994, vol. 18, pp. 205–206.
15 C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson
Education Limited, Edinburgh Gate Harlow Essex CM20-2JE
England, 3rd edn, 2008, p. 855.
16 J. Mlochowski, Rocz. Chem., 1974, 48, 2145–2155.
17 S. R. J. Strating and H. Wynberg, Communications, 1971, 209–212.
High selectivity was observed for Am(III) over Eu(III) (SFAm/Eu
=
ca. 180 at 4 M HNO3) and no significant changes in D values were
observed for both Am(III) and Eu(III) with increasing HNO3
concentration in the aqueous phase.
Similar results were obtained for BrC5-BTPhen 7b in 1-octanol
(Fig. 7) but a higher separation factor was observed (SFAm/Eu = 250 at 18 L. N. Puntus, A.-S. Chauvin, S. Varbanov and J.-C. G. Bu¨nzli, Eur. J.
Inorg. Chem., 2007, 2315–2326.
19 P. M. Marcos, J. R. Ascenso, M. A. P. Segurado, R. J. Bernardino and
4 M HNO3). However, while the D value for Am(III) remained at 100,
the D value for Eu(III) was significantly lower for 7b compared to 7a
P. J. Cragg, Tetrahedron, 2009, 65, 496–503.
over the range of HNO3 concentrations.
20 B. El Aroussi, N. Dupont, G. r. Bernardinelli and J. Hamacek, Inorg.
Chem., 2009, 49, 606–615.
21 P. M. Marcos, J. R. Ascenso, M. A. P. Segurado, P. J. Cragg, S. Michel,
V. Hubscher-Bruder and F. Arnaud-Neu, Supramol. Chem., 2011, 23,
93–101.
The extraction of Am(III) and Eu(III) from nitric acid solutions
by 7c in 1-octanol were subsequently investigated and compared
with the corresponding data for 7a and 7b. A similar D value for
c
8536 Chem. Commun., 2013, 49, 8534--8536
This journal is The Royal Society of Chemistry 2013