82
LAZAREVA, GOSTEVSKII
8. Merino, E., Chem. Soc. Rev., 2011, vol. 40, no. 7,
p. 3835.
–6.84 ppm. Found, %: C 66.54; H 8.27; N 8.71.
C18H26N2Si2. Calculated, %: C 66.20; H 8.02; N 8.58.
(2,2'-Bis(triethoxysilyl)azobenzene (5). 0.5 g
(2 mmol) of 2-(triethoxysilyl)aniline was dissolved in
10 mL of dry acetonitrile, added 0.25 g (2 mmol) of
NMMO, 0.5 mmol of CuBr and water-binding reagent
(the amounts are given in Table 2). The reaction mixture
was stirred at room temperature for 48 h, the precipitate
filtered and volatiles removed in vacuum. By crystalliza-
tion from cyclohexane was isolated viscous orange slowly
9. Kano, N., Komatsu, F., and Kawashima, T., Chem. Lett.,
2001, no. 4, p. 338.
10. Kano, N., Komatsu, F., and Kawashima, T., J. Am. Chem.
Soc., 2001, vol. 123, no. 43, p. 10778.
11. Kano, N., Yamamura, M., Komatsu, F., and Kawashima, T.,
J. Organomet. Chem., 2003, vol. 686, no. 1–2, p. 192.
12. Kano, N., Yamamura, M., and Kawashima, T., J. Am. Chem.
Soc., 2004, vol. 126, no. 20, p. 6250.
1
crystallized oil, yields see in Table 2. Н NMR spec-
trum, δ, ppm: 1.17 t (18H, CH3CH2, J = 7.1 Hz), 3.94 q
(12H, CH3CH2, J = 7.1 Hz), 7.68–8.32 m (8H, Ar). 13C
NMR spectrum, δС, ppm: 18.26, 58.56, 124.76, 128.69,
129.18, 130.64, 137.62, 159.84. 29Si NMR spectrum: δSi
–58.02 ppm. Found, %: 57.05; H 7.82; N 5.41.
C24H38N2O6Si2. Calculated, %: C 56.89; H 7.56; N 5.53.
13. Kano, N., Komatsu, F., Yamamura, M., and Kawashima, T.,
J. Am. Chem. Soc., 2006, vol. 128, no. 21, p. 7097.
14. Yamamura, M., Kano, N., and Kawashima, T., J. Organo-
metal. Chem., 2007, vol. 692, nos. 1–3, p. 313.
15. Yamamura, M., Kano, N., Kawashima, T., Matsumoto, T.,
Harada, J., and Ogawa, K., J. Org. Chem., 2008, vol. 73,
no. 21, p. 8244.
FUNDING
This work was performed with financial support of the Rus-
sian Foundation for Basic Research (grant no. 19-03-00143)
using the equipment of the BaikalAnalytical Center for Collec-
tive Use, Siberian Branch of the RussianAcademy of Sciences.
16. Yamamura, M., Kano, N., and Kawashima, T., Z. Anorg.
Allg. Chem., 2009, vol. 635, nos. 9–10, p. 1295.
17. Kakiage, K., Yamamura, M., Kyomen, T., Unno, M., and
Hanaya, M., Key Eng. Mat., 2012, vol. 497, p. 61.
18. Kano, N., Yamamura, M., and Kawashima, T., Dalton
Trans., 2015, vol. 44, no. 37, p. 16256.
https://doi.org/10.1039/C5DT02038G
19. Chuit, C., Corriu, R.J.P., Reye, C., and Young, J.C.,
Chem. Rev., 1993, vol. 93, no. 4, p. 1371.
20. Kost, D. and Kalikhman, I., Acc. Chem. Res., 2009, vol. 42,
no. 2, p. 303.
CONFLICT OF INTEREST
No conflict of interest was declared by the authors.
REFERENCES
1. Gromov, S.P., Dmitrieva, S.N., and Churakova, M.V.,
Russ. Chem. Rev., 2005, vol. 74, no. 5, p. 461.
2. Zatsepin, T.S., Abrosimova L.A, Monakhova, M.V., Hien
Le Thi, Pingoud, A., Kubareva, E.A., and Oretskaya, T.S.,
Russ. Chem. Rev., 2013, vol. 82, no. 10, p. 942.
3. Luo, W., Feng, Y., and Feng., W., Nanoscale, 2012, vol. 4,
no. 20, p. 6118.
21. Xu, Z., Huanga, W.-S., Zhanga, J., and Xu, L.-W.,
Synthesis, 2015, vol. 47, no. 23, p. 3645.
4. TylkowskiB.Trojanowska,A., Marturano,V., Nowak, M.,
Marciniak, L., Giamberini, M., Ambrogi, V., and Cerru-
ti, P., Coord. Chem. Rev., 2017, vol. 351, p. 205.
5. Wei, Y.-bo, Tanga, Q., Gonga, C.-bin, and Hon-Wah
Lamb, M., Anal. Chim. Acta, 2015, vol. 900, p. 10.
22. Kakiuchi, F., Matsumoto, M., Tsuchiya, K., Igi, K., Hay-
amizu, T., Chatani, N., and Murai, S., J. Organometal.
Chem., 2003, vol. 686, no. 1–2, p. 134.
23. Singh, S., Chauhan, P., Ravi, M., Taneja, I., Wahajuddin,
and Yadav, P.P., RSC Adv., 2015, vol. 5, no. 76, p. 61876.
6. Beharry, A.A. and Woolley, G.A., Chem. Soc. Rev.,
2011, vol. 40, no. 8, p. 4422.
24. John, A.A. and Lin, Q., J. Org. Chem., 2017, vol. 82,
no. 18, p. 9873.
7. Dhammika Bandarab, H.M. and Burdette, S.C., Chem.
Soc. Rev., 2012, vol. 41, no. 5, p. 1809.
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 90 No. 1 2020