TABLE 2. 1H NMR and IR Spectra of Synthesized Compounds
Com-
pound
ν (С=О),
сm-1
Chemical shifts, δ, ppm (J, Hz)
1b
1c
1d
1.76 (3Н, s, СH3); 2.12 (3H, s, 4-CH3); 3.81 (2Н, s, SСН2);
5.02 (2Н, m, =СН2); 5.97 (1Н, s, H-5); 12.50 (1Н, s, NН)
1670
1670
1670
1.69 (6Н, s, two CH3); 2.16 (3Н, s, 4-CH3); 3.77 (2Н, d, 3J = 6.9, SСН2);
5.38 (1Н, m, =СН); 5.96 (1Н, s, H-5); 12.46 (1Н, s, NН)
2.21 (3Н, s, 4-CH3); 3.97 (2Н, d, 3J = 7.2, SСН2); 6.39 (1Н, m, =СН);
6.66 (1Н, d, 3J = 10.5, =СНC6H5,); 7.23-7.39 (5Н, m, C6H5);
12.52 (1Н, s, NН)
2.31 (3Н, s, 5-CH3); 3.51 and 3.70 (2Н, two dd, 2J1 = 2J2 = 12.0, 3J = 5.9,
SСН2); 4.12 (2Н, m, СН2Br); 5.18 (1Н, m, H-3); 6.20 (1Н, s, H-6)
2а
2b
2с
2d
3а
3b
3с
3d
4а
4b
4c
5а
5b
5с
6а
8
1680
1700
1690
1695
1685
1700
1700
1700
1700
1690
1685
1680
1700
1690
1620
1680
1670
1700
1700
1.83 (3Н, s, 3-CH3); 2.16 (3Н, s, 5-CH3); 3.58 and 3.75 (2Н, two dd,
2J1 = 2J2 = 12.3, 4J = 2.2, SСН2); 4.15 (2Н, m, СН2Br); 6.22 (1Н, s, H-6)
3.46 and 3.76 (2Н, two d, 2J1 = 2J2 = 12.4, SСН2); 3.81 (2Н, m, СН2Br);
5.17 (1Н, m, H-3); 6.97 (1Н, s, H-6); 9.17 (2Н, br. s, NН2); 10.59 (1Н, s, NН)
1.88 (3Н, s, 3-CH3); 3.46 and 3.72 (2Н, two d, 2J1 = 2J2 = 12.1, SСН2);
3.89 (2Н, m, СН2Br); 6.09 (1Н, s, H-6); 8.73 (2Н, br. s, NН2)
2.31 (3Н, s, 5-CH3); 3.53 and 3.78 (2Н, two dd, 2J1 = 2J2 = 12.3, 3J = 5.8,
SСН2,); 4.13 (2Н, m, СН2I); 5.21 (1Н, m, H-3); 6.23 (1Н, s, H-6)
1.84 (3Н, s, 3-CH3); 2.15 (3Н, s, 5-CH3); 3.66 and 3.76 (2Н, two dd,
2J1 = 2J2 = 12.3, 4J = 1.8, SСН2); 4.18 (2Н, m, СН2І); 6.11 (1Н, s, H-6)
3.48 and 3.77 (2Н, two d, 2J1 = 2J2 = 12.0, SСН2); 3.85 (2Н, m, СН2І);
5.03 (1Н, m, H-3); 6.99 (1Н, s, H-6); 9.14 (2Н, br. s, NН2); 10.60 (1Н, s, NН)
1.83 (3Н, s, 3-CH3); 3.44 and 3.78 (2Н, two d, 2J1 = J2 = 12.3, SСН2);
3.88 (2Н, m, СН2І); 6.16 (1Н, s, H-6); 8.82 (2Н, br. s, NН2)
2.06 (3Н, s, 4-CH3); 2.15 (3Н, s, 4-CH3); 2.65 (3Н, s, 6-CH3);
3.56 and 3.82 (2Н, two m, SСН2); 4.66 (1Н, m, H-3); 6.21 (1Н, s, H-7)
2.34 (3Н, s, 6-CH3); 3.90 and 4.02 (2Н, two m, SСН2); 4.65 (1Н, m, H-3);
5.76 (1Н, d, 3J = 10.2, H-4); 6.21 (1Н, s, H-7); 6.42–7.67 (5Н, m, C6H5)
1.87 (3Н, s, 4-CH3); 1.94 (3Н, s, 4-CH3); 3.67 and 4.09 (2Н, two m, SСН2);
4.65 (1Н, m, H-3); 6.19 (1Н, s, H-7); 9.13 (2Н, br. s, NН2); 10.01 (1Н, s, NН)
2.11 (3Н, s, 4-CH3); 2.23 (3Н, s, 4-CH3); 2.49 (3Н, s, 6-CH3);
3.60 and 3.87 (2Н, two m, SСН2); 4.67 (1Н, m, H-3); 6.15 (1Н, s, H-7)
2.31 (3Н, s, 6-CH3); 3.85 and 4.00 (2Н, two m, SСН2); 4.70 (1Н, m, H-3);
5.79 (1Н, d, 3J = 10.1, H-4); 6.22 (1Н, s, H-7); 7.54–7.72 (5Н, m, C6H5)
1.89 (3Н, s, 4-CH3); 1.95 (3Н, s, 4-CH3); 3.70, 4.12 (2Н, two m, SСН2);
4.67 (1Н, m, H-3); 6.17 (1Н, s, H-7); 9.12 (2Н, br. s, NН2); 10.08 (1Н, s, NН)
2.11 (3Н, s, 5-CH3); 3.48 and 3.66 (2Н, two d, 2J1 = 2J2 = 6.6, SСН2);
3.99 (2Н, m, СН2Br); 5.06 (1Н, m, H-3); 6.01 (1Н, s, H-6)
2.19 (3H, d, 3J = 6.9, 3-CH3); 2.21 (3Н, s, 7-CH3); 3.83 (2H, d, 3J = 6.9,
SСН2); 5.11 (1H, m, H-3); 6.21 (1H, s, H-6)
9
2.11 (3Н, s, 4-CH3); 3.19 (1Н, t, 4J = 2.2, ≡СН,); 3.99 (2Н, d, 4J = 2.2, SCH2);
6.07 (1Н, s, H-5); 12.49 (1Н, s, NН)
10
11
2.31 (3Н, s, 5-CH3); 4.25 (2Н, s, SСН2); 6.26 (1Н, s, H-6);
7.18 (1Н, s, =СНBr)
2.21 (3Н, s, 5-CH3); 4.34 (2Н, s, SСН2); 6.06 (1Н, s, H-6); 7.07 (1Н, s, =СНI)
conversion. The high percentage conversion of compound 1e is probably connected with the presence in that
compound of an NH2 group, the electronic effect of which on the N(3) atom increases the basicity of the latter and
consequently increases the reactivity.
Thus the direction of halocyclization of 2-alkyenylthiopyrimidin-6-ones is substantially affected by the
structure of the S-alkeynyl substituent, which leads to regioselective formation of thiazolidinopyrimidinium or
pyrimidothiazinium derivatives. An electron-donor substituent on the heterocycle (R = NH2) accelerates the
heterocyclization of 2-(alkyenylthio)pyrimidin-6-ones.
664