Appl Biochem Biotechnol
11. Puranen, T., Poutanen, M., Ghosh, D., Vihko, R., & Vihko, P. (1997). Origin of substrate specificity of
human and rat 17β-hydroxysteroid dehydrogenase type 1, using chimeric enzymes and site-directed
substitutions 1. Endocrinology, 138, 3532–3539.
12. Lin, S.-X., Shi, R., Qiu, W., Azzi, A., Zhu, D.-W., Al Dabbagh, H., & Zhou, M. (2006). Structural basis of
the multispecificity demonstrated by 17β-hydroxysteroid dehydrogenase types 1 and 5. Molecular &
Cellular Endocrinology, 248, 38–46.
13. Fournier, D., Poirier, D., Mazumdar, M., & Lin, S. X. (2008). Design and synthesis of bisubstrate inhibitors
of type 1 17beta-hydroxysteroid dehydrogenase: overview and perspectives. European Journal of Medicinal
Chemistry, 43, 2298–2306.
14. Bail, J. C. L., Champavier, Y., Chulia, A. J., & Habrioux, G. (2000). Effects of phytoestrogens on
aromatase, 3β and 17β-hydroxysteroid dehydrogenase activities and human breast cancer cells. Life
Sciences, 66, 1281–1291.
15. Poirier, D. (2003). Inhibitors of 17β-hydroxysteroid dehydrogenases. Current Medicinal Chemistry, 10,
453–477.
16. Michiels, P. J., & Cstephan, L. (2009). Ligand-based NMR spectra demonstrate an additional phytoestrogen
binding site for 17beta-hydroxysteroid dehydrogenase type 1. Journal of Steroid Biochemistry & Molecular
Biology, 117, 93–98.
17. Deluca, D., Krazeisen, A., Breitling, R., Prehn, C., Möller, G., & Adamski, J. (2005). Inhibition of 17beta-
hydroxysteroid dehydrogenases by phytoestrogens: comparison with other steroid metabolizing enzymes.
Journal of Steroid Biochemistry & Molecular Biology, 93, 285–292.
18. Starčević, Š., Turk, S., Brus, B., Cesar, J., Rižner, T. L., & Gobec, S. (2011). Discovery of highly potent,
nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 inhibitors by virtual high-throughput screening. The
Journal of Steroid Biochemistry and Molecular Biology, 127, 255–261.
19. Zanin, G. M., & Moraes, F. F. D. (1998). Thermal stability and energy of deactivation of free and
immobilized amyloglucosidase in the saccharification of liquefied cassava starch. Applied Biochemistry &
Biotechnology, 70-72, 383–394.
20. Villee, C. A., & Gordon, E. E. (1955). Further studies on the action of estradiol in vitro. Journal of
Biological Chemistry, 216, 203–214.
21. Kruger, N. J. (1994) In Basic protein and peptide protocols (pp. 9–15) Springer.
22. Mohamad, N. R., Marzuki, N. H., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of
technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes.
Biotechnology Biotechnological Equipment, 29, 205–220.
23. Petkova, G. A., Záruba, K., & Král, V. (2012). Synthesis of silica particles and their application as supports
for alcohol dehydrogenases and cofactor immobilizations: conformational changes that lead to switch in
enzyme stereoselectivity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1824, 792–801.
24. Shen, H., Pan, S., Zhang, Y., Huang, X., & Gong, H. (2012). A new insight on the adsorption mechanism of
amino-functionalized nano-Fe 3 O 4 magnetic polymers in Cu (II), Cr (VI) co-existing water system.
Chemical Engineering Journal, 183, 180–191.
25. Chang, Q., & Tang, H. (2014). Immobilization of horseradish peroxidase on NH2-modified magnetic
Fe3O4/SiO2 particles and its application in removal of 2, 4-dichlorophenol. Molecules, 19, 15768–15782.
26. Klein, M. P., Nunes, M. R., Rodrigues, R. C., Benvenutti, E. V., Costa, T. M., Hertz, P. F., & Ninow, J. L.
(2012). Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages
and disadvantages of macro and nanoparticles. Biomacromolecules, 13, 2456–2464.
27. Le Bail, J., Laroche, T., Marre-Fournier, F., & Habrioux, G. (1998). Aromatase and 17β-hydroxysteroid
dehydrogenase inhibition by flavonoids. Cancer Letters, 133, 101–106.