7162 Biochemistry, Vol. 49, No. 33, 2010
Schneck et al.
predominant enzyme forms present during catalysis, thus yield-
ing different transitory enzyme forms to target for inhibitor
design. An example would be that if desorption of MgADP from
a binary kinase complex were rate-limiting in the mechanism,
drug discovery efforts could be well served by seeking to find small
molecules that specifically bind to the E-MgADP form in order to
further retard the regeneration of fresh, unliganded enzyme. For
FAK1, the resolution of the kinetics of activation, catalysis, and
product release deduced by this work shows that drug discovery
efforts for this or kinetically similar protein kinases could focus on
developing inhibitors that “trap” the enzyme in the “locked
down” closed form that has ATP or ADP bound.
16. Cohn, M., and Hu, A. (1978) Isotopic (18O) Shift in 31P Nuclear
Magnetic Resonance Applied to a Study of Enzyme-Catalyzed
Phosphate-Phosphate Exchange and Phosphate (Oxygen)-Water
Exchange Reactions. Proc. Natl. Acad. Sci. U.S.A. 75, 200–203.
17. Meek, T. D., Karsten, W. E., and DeBrosse, C. W. (1987) Carbamoyl-
Phosphate Synthetase II of the Mammalian CAD Protein. Kinetic
Mechanism and Elucidation of Reaction Intermediates by Positional
Isotope Exchange. Biochemistry 26, 2584–2593.
18. Otwinowski, Z. M., and Minor, W. (1997) Processing of X-ray
Diffraction Data Collected in Oscillation Mode. Methods Enzymol.
276, 307–326.
19. Nowakowski, J., Cronin, C. N., McRee, D. E., Knuth, M. W.,
Nelson, C. G., Pavletich, N. P., Rogers, J., Sang, B. C., Scheibe,
D. N., Swanson, R. V., and Thompson, D. A. (2002) Structures of the
Cancer-Related Aurora-A, FAK, and EphA2 Protein Kinases from
Nanovolume Crystallography. Structure 10, 1659–1667.
20. McCoy, A. J. (2007) Solving Structures of Protein Complexes by
Molecular Replacement with Phaser. Acta Crystallogr., Sect. D: Biol.
Crystallogr. 63, 32–41.
21. Emsley, P., and Cowtan, K. (2004) Coot: Model-Building Tools for
Molecular Graphics. Acta Crystallogr. D60, 2126–2132.
22. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refine-
ment of Macromolecular Structures by the Maximum-Likelihood
Method. Acta Crystallogr. D53, 240–255.
23. Keshwani, M. K., and Harris, T. K. (2008) Kinetic Mechanism
of Fully Activated S6K1 Protein Kinase. J. Biol. Chem. 283,
11972–11980.
24. Gao, X., and Harris, T. K. (2006) Steady-State Kinetic Mechanism of
PDK1. J. Biol. Chem. 281, 21670–21681.
25. Zhang, X., Zhang, S., Yamane, H., Wahl, R., Ali, A., Lofgren, J. A.,
and Kendall, R. L. (2006) Kinetic Mechanism of AKT/PKB Enzyme
Family. J. Biol. Chem. 281, 13949–13956.
ACKNOWLEDGMENT
The authors thank Dr. Richard Gontarek and Dr. Ryan
Kruger for thoughtful comments and WuXi AppTec Co., Ltd.
(Shanghai, China), for the preparation of [γ-18O]ATP.
SUPPORTING INFORMATION AVAILABLE
Figures 1S-3S and Tables 1S and 2S showing codon optimi-
zation of FAK(411-686), product and dead-end inhibition
results, and structural details of FAK1 interactions with AMP-
PNP. This material is available free of charge via the Internet at
26. Cook, P. F., and Cleland, W. W. (2007) Initial Velocity Studies in the
Absence of Added Inhibitors, in Enzyme Kinetics and Mechanism, pp
76-77, Garland Science, New York, NY.
27. Morrison, J. F., and James, E. (1965) The Mechanism of the Reaction
Catalysed by Adenosine Triphosphate-Creatine Phosphotransferase.
Biochem. J. 97, 37–52.
28. Cook, P. F., Neville, M. E., Jr., Vrana, K. E., Hartl, F., T., and
Roskoski, R., Jr. (1982) Adenosine Cyclic 30,50-Monophosphate
Dependent Protein Kinase: Kinetic Mechanism for the Bovine Ske-
letal Muscle Catalytic Subunit. Biochemistry 21, 5794–5799.
29. Midelfort, C. F., and Rose, I. A. (1976) A Stereochemical Method for
Detection of ATP Terminal Phosphate Transfer in Enzymatic Reac-
tions. Glutamine Synthetase. J. Biol. Chem. 251, 5881–5887.
30. Brouwer, A. C., and Kirsch, J. F. (1982) Investigation of Diffusion-
Limited Rated of Chymotrypsin Reactions by Viscosity Variation.
Biochemistry 21, 1302–1307.
31. Adams, J. A. (2003) Activation Loop Phosphorylation and Catalysis
in Protein Kinases: Is There Functional Evidence for the Autoinhi-
bitor Model? Biochemistry 42, 601–607.
32. Blacklow, S. C., Raines, R. T., Lim, W. A., Zamore, P. D., and
Knowles, J. R. (1988) Triosephosphate Isomerase Catalysis Is Diffu-
sion Controlled. Biochemistry 27, 1158–1167.
33. Bossemeyer, D. (1995) Protein Kinases;Structure and Function.
FEBS Lett. 369, 57–61.
34. Hanks, S. K., Quinn, A. M., and Hunter, T. (1988) The Protein Kinase
Family: Conserved Features and Deduced Phylogeny of the Catalytic
Domains. Science 241, 42–52.
35. Huse, M., and Kuriyan, J. (2002) The Conformational Plasticity of
Protein Kinases. Cell 109, 275–282.
36. Cleland, W. W. (1975) Partition Analysis and the Concept of Net
Rate Constants as Tools in Enzyme Kinetics. Biochemistry 14,
3220–3224.
37. Cook, P. F., and Cleland, W. W. (2007) Isotope Effects as a Probe of
Mechanism, in Enzyme Kinetics and Mechanism, pp 318-383,
Garland Science, New York, NY.
38. Burbaum, J., and Knowles, J. R. (1989) Internal Thermodynamics of
Enzymes Determined by Equilibrium Quench: Values of Kint for
Enolase and Creatine Kinase. Biochemistry 28, 9306–9317.
39. Nageswara Rao, B. D., and Cohn, M. E. (1979) 31P NMR of Enzyme-
bound Substrates of Rabbit Muscle Creatine Kinase. Equilibrium
Constants, Interconversion Rates, and NMR Parameters of Enzyme-
Bound Complexes. J. Biol. Chem. 256, 1716–1721.
REFERENCES
1. van Nimwegen, M. J., and van de Water, B. (2007) Focal Adhesion
Kinase: A Potential Target in Cancer Therapy. Biochem. Pharmacol.
73, 597–609.
2. Schlaepfer, D. D., Hauck, C. R., and Sieg, D. J. (1999) Signaling
through Focal Adhesion Kinase. Prog. Biophys. Mol. Biol. 71, 435–478.
3. McLean, G. W., Carragher, N. O., Avizienyte, E., Evans, J., Brunton,
V. G., and Frame, M. C. (2005) The Role of Focal-Adhesion Kinase
in Cancer;A New Therapeutic Opportunity. Nat. Rev. 5, 505–515.
4. Kornberg, L. J. (1998) Focal Adhesion Kinase and Its Potential
Involvement in Tumor Invasion and Metastasis. Head Neck 20,
745–752.
5. Lietha, D., Cai, X., Ceccarelli, D. F. J., Li, Y., Schaller, M. D., and
Eck, M. J. (2007) Structural Basis for the Autoinhibition of Focal
Adhesion Kinase. Cell 129, 1177–1187.
6. Arold, S. T., Hoellerer, M. K., and Noble, M. E. (2002) The Structural
Basis of Localization and Signalling by the Focal Adhesion Targetting
Domain. Structure 10, 319–327.
7. Hayashi, I., Vuori, K., and Liddington, R. C. (2002) The Focal
Adhesion Targeting (FAT) Region of Focal Adhesion Kinase Is a
Four-Helix Bundle That Binds Paxillin. Nat. Struct. Biol. 9, 101–106.
8. Calalb, M. B., Polte, T. R., and Hanks, S. K. (1995) Tyrosine
Phosphorylation of Focal Adhesion Kinase at Sites in the Catalytic
Domain Regulates Kinase Activity: A Role for Src Family Kinases.
Mol. Cell. Biol. 15, 954–963.
9. Toutant, M., Costa, A., Studler, J. M., Kadare, G., Carnaud, M., and
Girault, J. A. (2002) Alternative Splicing Controls the Mechanisms of
FAK Autophosphorylation. Mol. Cell. Biol. 22, 7731–7743.
10. Cole, P. A., Burn, P., Takacs, B., and Walsh, C. T. (1994) Evaluation
of the Catalytic Mechanism of Recombinant Human Csk (C-terminal
Src Kinase) Using Nucleotide Analogs and Viscosity Effects. J. Biol.
Chem. 269, 30880–30887.
11. Prowse, C. N., Hagopian, J. C., Cobb, M. H., Ahn, N. G., and Lew, J.
(2000) Catalytic Reaction Pathway for the Mitogen-Activated Protein
Kinase ERK2. Biochemistry 39, 6258–6266.
12. Waas, W. F., Rainey, M., Szafranska, A., and Dalby, K. (2003) Two
Rate-Limiting Steps in the Kinetic Mechanism of the Serine/Ther-
onine Specific Protein Kinase ERK2: A Case of Fast Phosphorylation
Followed by Fast Product Release. Cell. Mol. Biol. Lett. 8, 516–518.
13. Moffatt, J. G. (1964) A General Synthesis of Nucleosides-50 Trios-
phosphates. Can. J. Chem. 42, 599–604.
40. Wilkinson, K. D., and Rose, I. A. (1979) Isotope Trapping Studies of
Yeast Hexokinase during Steady-State Catalysis. J. Biol. Chem. 254,
12567–12572.
14. Hackney, D., Stempel, K. E., and Boyer, P. D. (1980) Oxygen-18
Probes of Enzymic Reactions of Phosphate Compounds. Methods
Enzymol. 64, 60–83.
15. Wehlri, W. E., Verheyden, D. L. M., and Moffatt, J. G. (1965) J. Am.
Chem. Soc. 87, 2265–2277.
41. Liu, M., Choi, S., Cuny, G. D., Ding, K., Dobson, B. C., Glicksman,
M. A., Auerbach., K., and Stein, R. L. (2008) Kinetic Studies of Cdk5/