Journal of Materials Chemistry A
recycled ZIF-8@SO H-GO-2 remained almost the same (13.2
Paper
3
4 J. W. Liu, L. F. Chen, H. Cui, J. Y. Zhang, L. Zhang and
C. Y. Su, Chem. Soc. Rev., 2014, 43, 6011.
wt%). Meanwhile, the TEM image of the recycled ZIF-8@SO H-
3
GO-2 conrmed almost no remarkable change in the structure
before and aer reuse (Fig. S4†). These results were in good
agreement with an excellent retention of the activity of the ZIF-
5 K. Leus, Y. Y. Liu and P. V. D. Voort, Catal. Rev.: Sci. Eng.,
2014, 56, 1.
6 (a) L. Q. Ma, C. Abney and W. B. Lin, Chem. Soc. Rev., 2009,
38, 1248; (b) Y. Liu, W. M. Xuan and Y. Cui, Adv. Mater.,
3
8@SO H-GO-2 catalyst.
2010, 22, 4112; (c) M. Y. Yoon, R. Srirambalaji and K. Kim,
Chem. Rev., 2012, 112, 1196.
Conclusions
7
(a) C. Wang, Z. G. Xie, K. E. deKra and W. B. Lin, J. Am.
Chem. Soc., 2011, 133, 13445; (b) A. Fateeva, P. A. Chater,
C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper,
J. R. Darwent and M. J. Rosseinsky, Angew. Chem., Int. Ed.,
2012, 51, 7440.
8 A. Dhakshinamoorthy and H. Garc ´ı a, ChemSusChem, 2014, 7,
2392.
9 M. Climent, A. Corma and S. Iborra, Chem. Rev., 2011, 111,
1072.
In summary, we have synthesized a functionalized graphene
oxide and nano-ZIF-8 composite via a facile coordination-
induced approach. With highly dispersed basic ZIF-8 nano-
particles and rich Lewis acids in this composite, it showed a
cooperative catalytic behavior in [3 + 3] formal cycloaddition
reactions and obtained high catalytic reactivity and selectivity
for a wide range of reactants. It is worth mentioning that it was
advantageous for the large size molecules due to the diminished
diffusion limitation derived from the added mesopores in the 10 S. Rostamnia, H. Xin and N. Nouruzi, Microporous
junctions between GO sheets and ZIF-8 nanoparticles. Mean- Mesoporous Mater., 2013, 179, 99.
while, it can be recycled and reused at least 10 times without 11 (a) R. Siriambalaji, S. Hong, R. Natarajan, M. Y. Yoon,
loss of activity. The presented strategy could be further extended
to the development of more robust MOF@GO nanocomposites
for multistep synthesis of synthetically valuable and complex
molecules.
R. Hota, Y. Kim, Y. H. Ko and K. Kim, Chem. Commun.,
2012, 48, 11650; (b) D. K. Wang and Z. H. Li, Catal. Sci.
Technol., 2015, 5, 1623; (c) T. Toyao, M. Saito, Y. Horiuchi
and M. Matsuoka, Catal. Sci. Technol., 2014, 4, 625; (d)
Y. R. Lee, Y. M. Chung and W. S. Ahn, RSC Adv., 2014, 4,
2
3064; (e) F. Vermoortele, R. Ameloot, A. Vimont, C. Serre
Acknowledgements
and D. D. Vos, Chem. Commun., 2011, 47, 1521.
This work was supported by the Natural Science Foundation of 12 (a) M. T. Zhao, K. Deng, L. C. He, Y. Liu, G. D. Li, H. J. Zhao
China (51273112), PCSIRT (IRT1269), RFDP (20123127120007)
and Shanghai Government (13QA1402800 and 12CG52).
and Z. Y. Tang, J. Am. Chem. Soc., 2014, 136, 1738; (b)
T. Ishida, M. Nagaoka, T. Akita and M. Haruta, Chem.–Eur.
J., 2008, 14, 8456; (c) Y. Y. Pan, B. Z. Yuan, Y. W. Li and
D. H. He, Chem. Commun., 2010, 46, 2280.
Notes and references
1
3 F. Zhang, Y. Y. Wei, X. T. Wu, H. Y. Jiang, W. Wang and
1
2
(a) T. Zhang and W. Lin, Chem. Soc. Rev., 2014, 43, 5982; (b)
H. X. Li, J. Am. Chem. Soc., 2014, 136, 13963.
A. Dhakshinamoorthy and H. Garc ´ı a, Chem. Soc. Rev., 2014, 14 (a) D. Bradashaw, A. Garai and J. Huo, Chem. Soc. Rev., 2012,
43, 5750; (c) M. P. Suh, H. J. Park, T. K. Prasad and
41, 2344; (b) C. Petit and T. J. Bandosz, Adv. Mater., 2009, 21,
4753; (c) X. Zhou, W. Y. Huang, J. Shi, Z. X. Zhao, Q. B. Xia,
Y. W. Li, H. H. Wang and Z. Li, J. Mater. Chem. A, 2014, 2,
4722; (d) J. W. Liu, Y. Zhang, X. W. Chen and J. H. Wang,
ACS Appl. Mater. Interfaces, 2014, 6, 10196; (e) D. Li, L. Qiu,
K. Wang, Y. Zeng, D. Li, T. Williams, Y. Huang,
M. Tsapatsis and H. T. Wang, Chem. Commun., 2012, 48,
2249; (f) X. Huang, B. Zheng, Z. D. Liu, C. L. Tan, J. Q. Liu,
C. L. Tan, J. Q. Liu, B. Chen, H. Li, J. Z. Chen, X. Zhang,
Z. X. Fan, W. N. Zhang, Z. Guo, F. W. Huo, Y. H. Yang,
L. H. Xie, W. Huang and H. Zhang, ACS Nano, 2014, 8,
8695; (g) A. S. Huang, Q. Liu, N. Y. Wang, Y. Q. Zhu and
J. Caro, J. Am. Chem. Soc., 2014, 136, 14686; (h) R. Kumar,
K. Jayaramulu, T. K. Maji and C. N. R. Rao, Chem.
Commun., 2013, 49, 4947; (i) I. Ahmed, N. A. Khan and
S. H. Jhung, Inorg. Chem., 2013, 52, 14155.
D. W. Lim, Chem. Rev., 2012, 112, 782; (d) T. A. Makal,
J. R. Li, W. Lu and H. C. Zhou, Chem. Soc. Rev., 2012, 41,
7761; (e) W. M. Xuan, C. F. Zhu, Y. Liu and Y. Cui, Chem.
Soc. Rev., 2012, 41, 1677.
(a) F. L. i. Xamena and J. Gascon, Metal Organic Frameworks
as Heterogeneous Catalysts, Royal Society of Chemistry,
Cambridge, 2013; (b) J. Gascon, A. Corma, F. Kapteijin and
F. L.
i
Xamena, ACS Catal., 2014, 4, 361; (c)
A. Dhakshinamoorthy, M. Opanasenko, J. Cˇ ejka and
H. Garc ´ı a, Catal. Sci. Technol., 2013, 3, 2509; (d)
A. Dhakshinamoorthy, A. M. Asiri and H. Garc ´ı a, Chem.
Soc. Rev., 2015, 44, 1922; (e) A. Corma, H. Garc ´ı a and
F. L. i Xamena, Chem. Rev., 2010, 110, 4606; (f) A. Schejn,
A. Aboulaich, L. Balan, V. Falk, J. Lalev ´e e, G. Medjahdi,
L. Aranda, K. Mozet and R. Schneider, Catal. Sci. Technol.,
2
015, 5, 1829; (g) H. Zhou, X. Q. Liu, J. Zhang, X. F. Yan, 15 (a) C. Petit and T. J. Bandosz, Adv. Funct. Mater., 2011, 21,
Y. J. Liu and A. H. Yuan, Int. J. Hydrogen Energy, 2014, 5,
160; (h) J. Zhang, X. Q. Liu, H. Zhou, X. F. Yan, Y. J. Liu
and A. H. Yuan, RSC Adv., 2014, 4, 28908.
2108; (b) S. Liu, L. X. Sun, F. Xu, J. Zhang, C. L. Jiao, F. Li,
Z. B. Li, S. Wang, Z. Q. Wang, X. Jiang, H. Y. Zhou,
L. N. Yang and C. Schick, Energy Environ. Sci., 2013, 6, 818.
2
3
J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen 16 (a) M. Jahan, Z. L. Liu and K. P. Loh, Adv. Funct. Mater., 2013,
and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450.
23, 5363; (b) D. D. Zu, L. Lu, X. Q. Liu, D. Y. Zhang and
J. Mater. Chem. A
This journal is © The Royal Society of Chemistry 2015