3
480 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 10
Letters
Table 2. In Vitro Cross-Screening Characterization (pKi) of
(5) Verge, D.; Daval, G.; Marcinkiewicz, M.; Patey, A.; el Mestikawy,
S.; Gozlan, H.; Hamon, M. Quantitative autoradiography of
multiple 5-HT1 receptor subtypes in the brain of control or 5,7-
dihydroxytryptamine-treated rats. J. Neurosci. 1986, 6, 3474-
SB-714786a
5-HT
adrenergic dopamine
3
482.
1
E
1F 2A 2B 2C
4
5A
6
7
R1B â2 D2 D3 D4
(
6) Bruinvels, A. T.; Palacios, J. M.; Hoyer, D. Autoradiographic
characterisation and localisation of 5-HT1D compared to 5-HT1B
binding sites in rat brain. Naunyn Schmiedeberg’s Arch. Phar-
macol. 1993, 347, 569-582.
<5.0 5.7 <5.6 5.9 5.5 <5.3 5.5 <5.0 6.3 6.0 5.7 5.5 6.0 <5.0
a
Radioligand binding assays from cloned human receptors.
Each determination lies within 0.3 log units of the mean.
(
(
(
7) Slassi, A. Recent advances in 5-HT1B/1D receptor antagonists
and agonists and their potential therapeutic applications. Curr.
Top. Med. Chem. 2002, 2, 559-574.
8) Clitherow, J. W.; King, F. D.; Middlemiss, D. N.; Wyman, P. A.
The discovery and development of 5-HT-terminal autoreceptor
antagonists. Prog. Med. Chem. 2003, 41, 129-165.
9) Roberts, C.; Price, G. W. Interaction of serotonin autoreceptor
antagonists in the rat dorsal raphe nucleus: an in vitro fast
cyclic voltammetry study. Neurosci. Lett. 2001, 300, 45-48.
Table 3. Intrinsic Activity of Piperazinesa
IA
5-HT1A
5-HT1B
5-HT1D
5
1
1
1
-HT
1.0
0
1.0
0.3
0.1
0.3
1.0
0
0.5
0.5
4, SB-714786
5
6
0
(
10) Roberts, C.; Price, G. W.; Middlemiss, D. N. Ligands for the
0
0.44
investigation of 5-HT autoreceptor function. Brain Res. Bull.
SB-272183
GR127935
2001, 56, 463-469.
0.47
0.86
(
11) Watson, J. M.; Burton, M. J.; Price, G. W.; Jones, B. J.;
Middlemiss, D. N. GR127935 acts as a partial agonist at
recombinant human 5-HT1D alpha and 5-HT1D beta receptors.
Eur. J. Pharmacol. 1996, 314, 365-372.
a
[35
S]GTPγS binding assay in the human receptor cell lines.
Intrinsic activity of 0: full antagonist. Intrinsic activity of 1: full
agonist. 5-HT, SB-27213, and GR127935 are standards.
(
12) Gaster, L. M.; Ham, P.; Joiner, G. F.; King, F. D.; Mulholland,
K. R.; Wyman, P. A.; Hagan, J. J.; Price, G. W.; Roberts, C.;
Routledge, C.; Selkirk, J.; Slade, P. D.; Middlemiss, D. N. The
selective 5-HT1B receptor inverse agonist SB-224289, potently
blocks terminal 5-HT autoreceptor function both in vitro and in
vivo. Ann. N.Y. Acad. Sci. 1998, 861, 270-271.
reported. As can be seen (Table 3), compounds typically
exhibited low or no intrinsic activity against the 5-HT1A
and 5-HT1B receptors, with intrinsic activity varying
from antagonist to partial agonist against the 5-HT1D
receptor. In particular, 14 (SB-714786) was found to
have no or low intrinsic activity against all three
receptors (Table 3). Further in vitro characterization of
this compound across a range of other monoamine
receptors has confirmed its exquisite selectivity for the
(13) Tepper, S. J.; Rapoport, A. M.; Sheftell, F. D. Mechanisms of
action of the 5-HT1B/1D receptor agonists. Arch. Neurol. 2002,
5
9, 1084-1088.
(
14) Timms, G. H.; Boot, J. R.; Broadmore, R. J.; Carney, S. L.;
Cooper, J.; Findlay, J. D.; Gilmore, J.; Mitchell, S.; Moore, N.
A.; Pullar, I.; Sanger, G. J.; Tomlinson, R.; Tree, B. B.; Wedley,
S. SAR development of a selective 5-HT1D antagonist/serotonin
reuptake inhibitor lead using rapid parallel synthesis. Bioorg.
Med. Chem. Lett. 2004, 14, 2469-2472.
5
-HT1D receptor, with at least 250-fold separation over
(15) Pullar, I. A.; Boot, J. R.; Broadmore, R. J.; Eyre, T. A.; Cooper,
J.; Sanger, G. J.; Wedley, S.; Mitchell, S. N. The role of the
all of the 16 other receptors studied (Table 2).
In conclusion, we have identified a novel series of
potent, selective 5-HT1D receptor antagonists and partial
agonists that are currently being used as tools to
increase our understanding of the 5-HT1B and 5-HT1D
receptor systems. Further chemical exploration around
this template is also in progress and will be disclosed
at a later date.
5
-HT1D receptor as a presynaptic autoreceptor in the guinea
pig. Eur. J. Pharmacol. 2004, 493, 85-93.
(16) Atkinson, P. J.; Bromidge, S. M.; Coleman, T.; Duxon, M. S.;
Gaster, L. M.; Hadley, M. S.; Hammond, B.; Johnson, C. N.;
Middlemiss, D. N.; North, S. E.; Price, G. W.; Rami, H. K.; Riley,
G. J.; Scott, C. M.; Shaw, T. E.; Starr, K. R.; Stemp, G.; Thewlis,
K. M.; Thomas, D. R.; Thompson, M.; Vong, A. K. K.; Watson, J.
M. 3,4-Dihydro-2H-benzoxazinones as 5-HT1A receptor ligands
with potent 5-HT reuptake inhibitory activity. Bioorg. Med.
Chem. Lett. 15, 737-741.
(
(
(
17) Choi, H. Y.; Chi, D. Y. A facile debromination reaction: can
bromide now be used as a protective group in aromatic systems?
J. Am. Chem. Soc. 2001, 123, 9202-9203.
References
(
1) Hartig, P. R.; Hoyer, D.; Humphrey, P. P.; Martin, G. R.
Alignment of receptor nomenclature with the human genome:
classification of 5-HT1B and 5-HT1D receptor subtypes. Trends
Pharmacol. Sci. 1996, 17, 103-105.
18) Hoyer, D.; Boddeke, H. W. Partial agonists, full agonists,
antagonists: dilemmas of definition. Trends Pharmacol. Sci.
1993, 14, 270-275.
19) Watson, J.; Roberts, C.; Scott, C.; Kendall, I.; Collin, L.; Day, N.
C.; Harries, M. H.; Soffin, E.; Davies, C. H.; Randall, A. D.;
Heightman, T.; Gaster, L.; Wyman, P.; Parker, C.; Price, G. W.;
Middlemiss, D. N. SB-272183, a selective 5-HT(1A), 5-HT(1B)
and 5-HT(1D) receptor antagonist in native tissue. Br. J.
Pharmacol. 2001, 133, 797-806.
(
2) Hoyer, D.; Hannon, J. P.; Martin, G. R. Molecular, pharmaco-
logical and functional diversity of 5-HT receptors. Pharmacol.
Biochem. Behav. 2002, 71, 533-554.
(
3) Barnes, N. M.; Sharp, T. A review of central 5-HT receptors and
their function. Neuropharmacology 1999, 38, 1083-1152.
4) Oksenberg, D.; Marsters, S. A.; O’Dowd, B. F.; Jin, H.; Havlik,
S.; Peroutka, S. J.; Ashkenazi, A. A single amino-acid difference
confers major pharmacological variation between human and
rodent 5-HT1B receptors. Nature 1992, 360, 161-163.
(
JM049039V