The effects of antler on immunological function may be
the result of stimulation of cellular immunity or the
suppression of pathogenic activity. Of the various patho-
gens in humans, fungi are least vulnerable to medicines.
Only a few phospholipids exhibited antifungal activity
but none of them targeted on the morphogenic transition
suppression of fungi, to the best of our knowledge.10 We
successfully synthesized lysoPC as well as its two regio-
isomers in racemic form in order to establish a powerful
spectroscopic tool for the structural elucidation of lysoPCs
in nature.8f,g From our previous study, however, the
isolated lysoPC was proven to be not as effective as other
commercially available drugs such as amphotericin B,
clotrimazole, ketoconazole, and fluconazole on the sup-
pression of hyphal transition of C. albicans (data not
shown). In addition, sphingomyelin and phosphatidyl-
choline had no effect, suggesting that both phosphocho-
line moiety and a short chain length at the C1 position
of the glycerol backbone may be necessary in the hyphal
transition suppressing activity. These results led us to
design and synthesize four lysoPC analogues. In this
paper, we report the asymmetric synthesis of newly
designed lysoPC analogues to search for a novel hyphal
transition suppressor in C. albicans.
Syn th esis of Novel
Lysop h osp h a tid ylch olin e An a logu es Usin g
Ser in e a s Ch ir a l Tem p la te
Young-Ah Kim,† Hae-Mi Chung,† J in-Seon Park,†
Wonja Choi,*,‡ J uyoung Min,‡ Nok-Hyun Park,‡
Ki-Hwan Kim,† Gil-J a J hon,† and So-Yeop Han*,†
Department of Chemistry, Division of Molecular Life
Sciences and Department of Life Sciences, Ewha Womans
University, Seoul 120-750, Korea
syhan@ewha.ac.kr
Received J uly 6, 2003
Abstr a ct: Four novel lysophosphatidylcholine (lysoPC)
analogues, (S)-N-stearoyl-O-phosphocholineserine methyl
ester [(S)-1a ], (R)-1-lyso-2-stearoylamino-2-deoxy-sn-glycero-
3-phosphatidylcholine [(R)-2a ], (R)-N-stearoyl-O-phospho-
cholineserine methyl ester [(R)-1b], and (S)-1-lyso-2-stearoyl-
amino-2-deoxy-sn-glycero-3-phosphatidylcholine [(S)-2b], were
synthesized starting from serine as a chiral template. These
synthetic compounds exhibited greatly enhanced hyphal
transition inhibitory activity in Candida as compared to the
natural lysoPC.
Structures of novel lysoPC analogues are shown in
Figure 1. They are (S)-N-stearoyl-O-phosphocholineserine
methyl ester [(S)-1a ], (R)-1-lyso-2-stearoylamino-2-deoxy-
sn-glycero-3-phosphatidylcholine [(R)-2a ], (R)-N-stearoyl-
O-phosphocholineserine methyl ester [(R)-1b ], and
(S)-1-lyso-2-stearoylamino-2-deoxy-sn-glycero-3-phospha-
tidylcholine [(S)-2b].
Recently, lysophosphatidylcholine (lysoPC) has been of
crucial importance in various biochemical processes due
to its regulatory activity of signaling enzymes in a range
of lysoPC-responsive cells. LysoPC mediates the activa-
tion of p38, AP-1, and J NK kinases,1,2 as well as adenylyl
cyclase,3 and displays the inhibition of platelet aggrega-
tion4,5 while specifically binding to two G-protein-coupled
receptors, OGR1 and GPR4, with lower affinity than
sphingosylphosphorylcholine.6 In addition, the presence
of lysoPC resulted in the migration of lymphocytes
toward the site of inflammatory tissue by inducing the
secretion of chemotactic chemicals from macrophages.7
In the course of our study in glycerolipid chemistry,8
we isolated lysoPCs from deer antler extracts, guided by
the inhibitory activity of morphogenic transition of yeast
to hyphae in Candida albicans, and fully characterized
their structures.8e Despite the growing knowledge of deer
antler in immunological function, the molecular basis of
a cellular target or mechanism of action is unknown.8a,9
These four lysoPC analogues are designed in such a
way that the OH group at the C1 position of the glycerol
backbone is either preserved or transformed into the CO2-
CH3 group, whereas the OH group at the C2 position is
replaced by NHCO(CH2)16CH3. LysoPC analogues are
designed to possess the amide group instead of the ester
with an expectation of providing them with resistance
to enzymatic hydrolysis.
Synthesis of the first target molecule, (S)-N-stearoyl-
O-phosphocholineserine methyl ester [(S)-1a ], is illus-
(8) (a) Han, S.-Y.; Cho, S.-H.; Kim, S.-Y.; Seo, J .-T.; Moon, S.-J .;
J hon, G.-J . Bioorg. Med. Chem. Lett. 1999, 9, 59-64. (b) Kim, Y. H.;
Han, S.-Y.; Cho, S.-H.; Yoo, J . S.; J hon, G.-J . Rapid Commun. Mass
Spectrom. 1999, 13, 481-487. (c) Limb, J .-K.; Kim, Y. H.; Han, S.-Y.;
J hon, G.-J . J . Lipid Res. 1999, 40, 2169-2176. (d) Kim, Y. H.; So, K.-
Y.; Limb, J .-K.; J hon, G.-J .; Han, S.-Y. Rapid Commun. Mass Spectrom.
2000, 14, 2230-2237. (e) Min, J .; Lee, Y.-J .; Kim, Y.-A.; Park, H.-S.;
Han, S.-Y.; J hon, G.-J .; Choi, W. Biochim. Biophys. Acta 2001, 1531,
77-89. (f) Hong, J .; Kim, Y. H.; Gil, J . H.; Cho, K.; J ung, J . H.; Han,
S.-Y. Rapid Commun. Mass Spectrom. 2002, 16, 2089-2093. (g) Kim,
Y.-A.; Park, M.-S.; Kim, Y. H.; Han, S.-Y. Tetrahedron 2003, 59, 2921-
2928.
* Corresponding author.
† Department of Chemistry and Division of Molecular Life Sciences.
‡ Department of Life Sciences.
(1) Nixon, A. B.; O’Flaherty, J . T.; Salyer, J . K.; Wykle, R. L. J . Biol.
Chem. 1999, 274, 5469-5473.
(2) Fang, X.; Gibson, S.; Flowers, M.; Furui, T.; Bast, R. C., J r.; Mills,
G. B. J . Biol. Chem. 1997, 272, 13683-13689.
(3) Yuan, Y.; Schoenwaelder, S. M.; Salem, H. H.; J ackson, S. P. J .
Biol. Chem. 1996, 271, 27090-27098.
(9) Suh, J . S.; Eun, J . S.; So, J . N.; Seo, J . T.; J hon, G. J . Biol. Pharm.
Bull. 1999, 22, 932-935.
(4) Yuan, Y.; J ackson, S. P.; Newnham, H. H.; Mitchell, C. A.; Salem,
H. H. Blood 1995, 86, 4166-4174.
(10) (a) Bierer, D. E.; Dubenko, L. G.; Litvak, J .; Gerber, R. E.; Chu,
J .; Thai, D. L.; Tempesta, M. S.; Truong, T. V. J . Org. Chem. 1995, 60,
7646-7653. (b) Bierer, D. E.; Gerber, R. E.; J oladd, S. D.; Ubillas, R.
P.; Randle, J .; Nauka, E.; Latour, J .; Dener, J . M.; Fort, D. M.; Kuo, J .
E.; Inman, W. D.; Dubenko, L. G.; Ayala, F.; Ozioko, A.; Obialor, C.;
Elisabetsky, E.; Carlson, T.; Truong, T. V.; Bruening, R. C. J . Org.
Chem. 1995, 60, 7022-7026. (c) VanMiddlesworth, F.; Lopez, M.;
Zweerink, M.; Edison, A. M.; Wilson, K. J . Org. Chem. 1992, 57, 4753-
4754. (d) Tsushima, S.; Yoshioka, Y.; Tanida, S.; Nomura, H.; Nojima,
S.; Hozumi, M. Chem. Pharm. Bull. 1982, 30, 3260-3270.
(5) Marathe, G. K.; Silva, A. R.; de Castro Faria Neto, H. C.;
Tjoelker, L. W.; Prescott, S. M.; Zimmerman, G. A.; McIntyre, T. M. J .
Lipid Res. 2001, 42, 1430-1437.
(6) Zhu, K.; Baudhuin, L. M.; Hong, G.; Williams, F. S.; Cristina,
K. L.; Kabarowski, J . H. S.; Witte, O. N.; Xu, Y. J . Biol. Chem. 2001,
276, 41325-41335.
(7) (a) Libby, P.; Hansson, G. K. Lab. Invest. 1991, 64, 5-15. (b)
Kugiyama, K.; Kerns, S. A.; Morrisett, J . D.; Roberts, R.; Henry, P. D.
Nature 1990, 344, 160-162.
10.1021/jo034969s CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/03/2003
10162
J . Org. Chem. 2003, 68, 10162-10165