Organic Letters
Letter
Scheme 5. Formal Synthesis of ( )-Antofine
ACKNOWLEDGMENTS
■
Generous financial support by the Department of Science and
Technology (DST), New Delhi (Grant No. SB/S1/OC-17/
2013) and the Council of Scientific and Industrial Research
(CSIR), New Delhi (Grant Nos. CSC0108 and CSC0130) is
gratefully acknowledged. We thank Dr. Rajesh. G. Gonnade and
Mr. Shridhar H. Thorat (Center for Materials Characterization,
CSIR-NCL) for assistance with X-ray crystallography. A.B.G.
thanks CSIR for the award of Junior Research Fellowship (JRF).
REFERENCES
■
(1) (a) Michael, J. P. Simple Indolizidine and Quinolizidine Alkaloids.
In The Alkaloids: Chemistry and Biology; Vol. 75; Knolker, H.-J.., Ed.;
̈
Academic Press: London, 2016; Chapter 1, pp 1−498. For selected
reviews, see: (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139−165.
(c) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104,
3341−3370.
(2) Selected reviews: (a) Ranieri, B.; Escofet, I.; Echavarren, A. M. Org.
Biomol. Chem. 2015, 13, 7103−7118. (b) Patil, N. T. Curr. Sci. 2013,
104, 1671−1680. (c) Corma, A.; Leyva-Perez, A.; Sabater, M. J. Chem.
́
Rev. 2011, 111, 1657−1712. (d) Wegner, H. A.; Auzias, M. Angew.
Chem., Int. Ed. 2011, 50, 8236−8247. (e) Bandini, M. Chem. Soc. Rev.
(4-methoxyphenyl)-4-(trimethylsilyl)but-3-yn-1-ol (9), was syn-
thesized readily in two steps from p-anisaldehyde.14 The
deprotection of the −TMS group with TBAF in THF (cf. 10)
followed by Mitsunobu reaction with succinimide led to the
formation of imide 11. The selective reduction of imide 11 was
then performed with LiEt3BH at −78 °C to afford aminaloalkyne
12 as 1:1 mixture of diastereomers. When aminaloalkyne 12 was
treated with IPrAuOTf under standard conditions, the hydro-
aminaloxylation and Petasis−Ferrier rearrangement cascade
proceeded smoothly to give appropriately substituted indolizi-
dines 13a (anti) and 13b (syn) as a diastereomeric mixture
(13a:13b = 1:3). Since the conversion of 13b into antofine is
known,15 this work represents the formal synthesis of this
structurally intriguing molecule.
In summary, we have developed a new approach for the
synthesis of indolizidines and quinolizidines from aminaloal-
kynes via a gold(I)-catalyzed hydroaminaloxylation and Petasis−
Ferrier rearrangement cascade. The functionality embedded in
these structures would enable their facile elaboration into more
complex structures of biological relevance. For instance, the
application of this methodology in the formal synthesis of
( )-antofine has been described. Studies addressing the
enantioselective version with merged gold/chiral Brønsted acid
catalysis are currently under investigation.16
2011, 40, 1358−1367. (f) Hashmi, A. S. K.; Buhrle, M. Aldrichimica Acta
̈
2010, 43, 27−33. (g) Abu Sohel, S. Md.; Liu, R.-S. Chem. Soc. Rev. 2009,
38, 2269−2281. (h) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208−3221.
̈
(i) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351−
́
3378. (j) Arcadi, A. Chem. Rev. 2008, 108, 3266−3325. (k) Jimenez-
Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326−3350.
́
̃
(l) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271−
2296.
(3) Kim, C.; Bae, H. J.; Lee, J. H.; Jeong, W.; Kim, H.; Sampath, V.;
Rhee, Y. H. J. Am. Chem. Soc. 2009, 131, 14660−14661.
(4) Cui, L.; Li, C.; Zhang, L. Angew. Chem., Int. Ed. 2010, 49, 9178−
9181.
(5) Liu, L.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 7301−7304.
́
́
(6) Fustero, S.; Miro, J.; Sanchez-Rosellο, M.; del Pozo, C. Chem. - Eur.
J. 2014, 20, 14126−14131.
(7) For oxacycle synthesis, see: (a) Cao, Z.; Zhang, H.; Zhang, X.;
Zhang, L.; Meng, X.; Chen, G.; Zhao, X. − E.; Sun, X.; You, J. RSC Adv.
2015, 5, 103155−103158. (b) Bae, H. J.; Jeong, W.; Lee, J. H.; Rhee, Y.
H. Chem. - Eur. J. 2011, 17, 1433−1436. (c) Adriaenssens, L. V.; Hartley,
R. C. J. Org. Chem. 2007, 72, 10287−10290.
(8) See Supporting Information for details.
(9) (a) Mandell, L.; Singh, K. P.; Gresham, J. T.; Freeman, W. J. J. Am.
Chem. Soc. 1965, 87, 5234−5236. (b) Mandell, L.; Singh, K. P.;
Gresham, J. T.; Freeman, W. J. J. Am. Chem. Soc. 1963, 85, 2682−2683.
(10) Patil, N. T.; Shinde, V. S.; Gajula, B. Org. Biomol. Chem. 2012, 10,
211−224.
́
(11) Gasperini, D.; Collado, A.; Gomez-Suarez, A.; Cordes, D. B.;
ASSOCIATED CONTENT
■
Slawin, A. M. Z.; Nolan, S. P. Chem. - Eur. J. 2015, 21, 5403−5412.
(12) (a) Jiang, G. J.; Wang, Y.; Yu, X. Z. J. Org. Chem. 2013, 78, 6947−
6955. (b) Petasis, N. A.; Lu, S. − P. J. Am. Chem. Soc. 1995, 117, 6394−
6395.
S
* Supporting Information
The Supporting Information is available free of charge on the
(13) For π-activation of enol ethers by a gold catalyst, see: (a) Zhu, Y.;
Day, C. S.; Jones, A. C. Organometallics 2012, 31, 7332−7335.
(14) Shindo, M.; Sugioka, T.; Shishido, K. Tetrahedron Lett. 2004, 45,
9265−9267.
(15) Pansare, S. V.; Lingampally, R.; Dyapa, R. Eur. J. Org. Chem. 2011,
2011, 2235−2238.
(16) Reviews: (a) Inamdar, S. M.; Konala, A.; Patil, N. T. Chem.
Commun. 2014, 50, 15124−15135. (b) Chen, D. F.; Han, Z. Y.; Gong, L.
Z. Acc. Chem. Res. 2014, 47, 2365−2377. (c) Loh, C. C. J.; Enders, D.
Chem. - Eur. J. 2012, 18, 10212−10225.
All experimental procedure, analytical data, and copies of
1H, 13C NMR spectra for all newly synthesized products
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX