8454 J. Am. Chem. Soc., Vol. 122, No. 35, 2000
Crimmins et al.
Scheme 1
Scheme 2
Scheme 3
of a synthesis of a member of the ginkgolide family.12 The Corey
group disclosed their successful syntheses of ginkgolides B13
and A14 the following year. Corey has also reported on the
synthesis and biological activity of several simpler ginkgolide
analogues.11 Work in our laboratories has also led to the
completion of the syntheses of bilobalide15 and, recently,
ginkgolide B.16 Herein is presented a detailed account of the
investigations which culminated in the total synthesis of
ginkgolide B.
In the original strategic analysis of ginkgolide B (Scheme
1), pentacycle 2 was thought to be a viable intermediate for the
attachment of the C ring lactone. Acetal 2 would be obtained
from bis(methyl acetal) 3, via an acid-catalyzed closure of the
E ring. The bisacetal 3 would ultimately arise from the
regioselective cyclobutane cleavage of tetracycle 4. The key
step in the proposed sequence, a double diastereoselective
intramolecular [2+2] photocycloaddition,17 would provide 4
from enone 5. The photocycloaddition would serve to not only
construct the B ring, but also establish the stereochemistry of
the two quaternary centers at C5 and C9 as well as the C4
stereochemistry. Photosubstrate 5 would be obtained from
acetylenic ester 6 via a zinc homoenolate conjugate addition/
cyclization which was specifically developed for this purpose
during the course of this work.18
The first objective in the synthesis was the development of
a workable synthesis of the acetylenic ester 6. Synthesis of
acetylenic ester 6 began with commercially available 3-fural-
dehyde which was converted to unsaturated ester 7 via a Wittig
reaction with the stabilized ylide, Ph3PdCHCO2Et (Scheme 2).15
Exposure of ester 7 to the higher order tert-butyl cuprate (t-
Bu2CuCNLi2)19 in the presence of TMSCl provided the ester 8
which was directly treated with i-Bu2AlH to provide the
aldehyde 9 in 95% overall yield. Addition of the lithium
acetylide of ethyl propiolate to aldehyde 9 resulted in a 3.3:1
separable mixture of the desired anti diastereomer 10 to the syn
product 11.20
The completion of the assembly of the photosubstrate 5 from
the acetylenic ester 6 was accomplished through a conjugate
addition-cyclization protocol using the Kuwajima-Nakamura
zinc homoenolate21 which had been developed in our laboratory
specifically for this purpose. The zinc homoenolate 12 was
generated via ultrasonic irradiation of [(ethoxycyclopropyl)oxy]-
trimethylsilane22 in the presence of ZnCl2‚OEt2 (Scheme 3).
Treatment of the homoenolate reagent with CuBr‚SMe2 followed
by addition of the acetylenic ester 10 and HMPA to the reaction
mixture resulted in the desired conjugate addition-cyclization
in excellent yield.18 Mechanistically, it is proposed that the zinc/
(11) Corey, E. J.; Gavai, A. V. Tetrahedron Lett. 1988, 29, 3201-3204.
Corey, E. J.; Gavai, A. V. Tetrahedron Lett. 1989, 30, 6959-6962. Corey,
E. J.; Kamiyama, K. Tetrahedron Lett. 1990, 31, 3995-3998. Corey, E. J.;
Rao, K. S. Tetrahedron Lett. 1991, 32, 4623-4626. Weinges, K.; Rummler,
M.; Schick, H.; Schilling, G. Liebigs Ann. Chem. 1993, 287-291.
(12) Corey, E. J.; Su, W. J. Am. Chem. Soc. 1987, 109, 7534-7536.
Corey, E. J.; Su, W. Tetrahedron Lett. 1988, 29, 3423-3426.
(13) Corey, E. J.; Kang, M.; Desai, M. C.; Ghosh, A. K.; Houpis, I. N.
J. Am. Chem. Soc. 1988, 110, 649-651. Corey, E. J. Chem. Soc. ReV. 1988,
17, 111-133. Corey, E. J.; Gavai, A. V. Tetrahedron Lett. 1988, 29, 3201-
3204. Desai, M. C.; Ghosh, A. K.; Kang, M.-C.; Houpis, I. N. In Strategies
and Tactics in Organic Synthesis; Lindberg, T., Ed.; Academic Press: New
York; 1991; pp 89-119.
(14) Corey, E. J.; Ghosh, A. K. Tetrahedron Lett. 1988, 29, 3205-3206.
(15) Crimmins, M. T.; Jung, D. K.; Gray, J. L. J. Am. Chem. Soc. 1992,
112, 5445-5547. Crimmins, M. T.; Gray, J. L.; Jung, D. K. J. Am. Chem.
Soc. 1993, 115, 3146-3155.
(16) Crimmins, M. T.; Pace, J. M.; Nantermet, P. G.; Kim-Meade, A.
S.; Thomas, J. B.; Wagman, A. S.; Watterson, S. H. J. Am. Chem. Soc.
1999, 121, 10249-10250.
(17) Crimmins, M. T.; Reinhold: T. L. Org. React. 1993, 44, 297-588.
Crimmins, M. T. In ComprehensiVe Organic Synthesis; Trost, B. M., Ed.;
Pergamon: Oxford, England, 1991; Vol. 5, pp 123-150. Crimmins, M. T.
Chem. ReV. 1988, 88, 1453-1473. De Keukeleire, D.; He, S.-L. Chem.
ReV. 1993, 93, 359-380. For recent discussions of the mechanism of [2+2]
enone-olefin photocycloadditions see: Schuster, D. I.; Lem, G.; Kaprinidis,
N. A. Chem. ReV. 1993, 93, 3-22. Andrew, D.; Hastings, D. J.; Weedon,
A. C. J. Am. Chem. Soc. 1994, 116, 10870-10882. Maradyn, D. J. Weedon,
A. C. Tetrahedron Lett. 1994, 35, 8107-8110; Maradyn, D. J. Weedon,
A. C. J. Am. Chem. Soc. 1995, 117, 5359-5360.
(18) Crimmins, M. T.; Nantermet, P. G. J. Org. Chem. 1990, 55, 4235-
4236. Crimmins, M. T.; Nantermet, P. G.; Trotter, B. W.; Vallin, I. M.;
Watson, P. S.; McKerlie, L. A.; Reinhold: T. L.; Cheung, A. W. H.; Stetson,
K. A.; Dedopoulou, D.; Gray, J. L. J. Org. Chem. 1993, 58, 1038-1047.
(19) Lipshutz, B. H. Sengupta, S. Org. React. 1992, 41, 135.
(20) Attempts to convert the syn isomer to the anti isomer via the
Mitsunobu inversion led only to Michael addition of the acetylenic ester in
the hydrolysis step.
(21) Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 3368.
Nakamura, E.; Aoki, S.; Sekia, K.; Oshino, H.; Kuwajima, I. J. Am. Chem.
Soc. 1987, 109, 8056.
(22) Salaun, J.; Marguerite, J. Organic Syntheses; Wiley: New York,
1990; Collect. Vol. VII, p 131.