1
536
W.-D. Lin et al. / Process Biochemistry 45 (2010) 1529–1536
[
6] Tanne JH. Methamphetamine epidemic hits middle America. BMJ
[28] Warnke MM, Mitchell CR, Rozhkov RV, Emrich DE, Larock RC, Armstrong DW.
Use of native and derivatized cyclodextrin based and macrocyclic glycopeptide
based chiral stationary phases for the enantioseparation of pterocarpans by
HPLC. J Liq Chromatogr Relat Technol 2005;28:823–34.
2
006;332:382.
[
[
7] Coombes R. Cold Turkey. BMJ 2007;334:1190–2.
8] Bergmann ED, Sulzbacher M. A new synthesis of 1-(m- and p-hydroxyphenyl)-
2
-methylaminoethanol (m- and p-sympathol). J Org Chem 1951;16:84–9.
[29] Huang K, Breitbach ZS, Armstrong DW. Enantiomeric impurities in chi-
ral synthons, catalysts, and auxiliaries: Part 3. Tetrahedron: Asymmetry
2006;17:2821–32.
[30] Katz M, Frejd T, Hahn-Hägerdal B, Gorwa-Grauslund MF. Efficient anaerobic
whole cell stereoselective bioreduction with recombinant Saccharomyces cere-
visiae. Biotechnol Bioeng 2003;84:573–82.
[31] Hsu SK, Lo HH, Kao CH, Lee DS, Hsu WH. Enantioselective synthesis of l-
homophenylalanine by whole cells of recombinant Escherichia coli expressing
l-aminoacylase and N-acylamino acid racemase genes from Deinococcus radio-
durans BCRC12827. Biotechnol Prog 2006;22:1578–84.
[
9] Russell PB, Childerss ST. New route to phenylephrine. J Pharm Sci 1961;50:713.
[
[
10] Britten AZ. A new route to d,l-phenylephrine. Chem Ind 1968;24:771–2.
11] Takeda H, Tachinami T, Aburatani M, Takahashi H, Morimoto M, Achiwa K. Prac-
tical asymmetric synthesis of (R)-(−)-phenylephrine hydrochloride catalyzed
by (2R,4R)-MCCPM-rhodium complex. Tetrahedron Lett 1989;30:367–70.
12] Klinger FD, Wolter L, Dietrich W. Method for preparing of l-phenylephrine
hydrochloride. U.S. Patent 6,187,956 (2001).
[
[
[
[
[
13] Pandey RK, Upadhyay PK, Kumar P. Enantioselective synthesis of (R)-
phenylephrine hydrochloride. Tetrahedron Lett 2003;44:6245–6.
14] Kumar P, Naidu V, Gupta P. Application of hydrolytic kinetic resolution (HKR)
in the synthesis of bioactive compounds. Tetrahedron 2007;63:2745–85.
15] De Wildeman SM, Sonke T, Schoemaker HE, May O. Biocatalytic reductions:
from lab curiosity to “first choice”. Acc Chem Res 2007;40:1260–6.
16] Kroutil W, Mang H, Edegger K, Faber K. Recent advances in the biocatalytic
reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol
[32] Lee YC, Chien HC, Hsu WH. Production of N-acetyl-d-neuraminic acid by
recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-d-glucosamine
2-epimerase and Escherichia coli N-acetyl-d-neuraminic acid lyase. J Biotechnol
2007;129:453–60.
[33] Marín A, Barbas C. LC/MS for the degradation profiling of cough-cold products
under forced conditions. J Pharm Biomed Anal 2004;35:1035–45.
[34] Kataoka M, Kita K, Wada M, Yasohara Y, Hasegawa J, Shimizu S. Novel biore-
duction system for the production of chiral alcohols. Appl Microbiol Biotechnol
2003;62:437–45.
2
004;8:120–6.
[
[
17] Patel R, Hanson R, Goswami A, Nanduri V, Banerjee A, Donovan MJ, et al. Enzy-
matic synthesis of chiral intermediates for pharmaceuticals. J Ind Microbiol
Biotechnol 2003;30:252–9.
18] Hsin LW, Dersch CM, Baumann MH, Stafford D, Glowa JR, Rothman RB, et
al. Development of long-acting dopamine transporter ligands as potential
cocaine-abuse therapeutic agents: chiral hydroxyl-containing derivatives of
[35] Nakamura K, Yamanaka R, Matsuda T, Harada T. Recent developments in
asymmetric reduction of ketones with biocatalysts. Tetrahedron: Asymmetry
2003;14:2659–81.
[36] Tang Y, Lee HY, Tang Y, Kim CY, Mathews I, Khosla C. Structural and func-
tional studies on SCO1815: a beta-ketoacyl-acyl carrier protein reductase from
Streptomyces coelicolor A3(2). Biochemistry 2006;45:14085–93.
[37] Zaccai NR, Carter LG, Berrow NS, Sainsbury S, Nettleship JE, Walter TS, et al.
Crystal structure of a 3-oxoacyl-(acylcarrier protein) reductase (BA3989) from
Bacillus anthracis at 2.4-Å resolution. Proteins 2008;70:562–7.
[38] Price AC, Zhang YM, Rock CO, White SW. Structure of beta-ketoacyl-[acyl car-
rier protein] reductase from Escherichia coli: negative cooperativity and its
structural basis. Biochemistry 2001;40:12772–81.
[39] Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, et al. Short-
chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact
2003;143–144:247–53.
[40] Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, et al. Critical
residues for structure and catalysis in short-chain dehydrogenases/reductases.
J Biol Chem 2002;277:25677–84.
[41] Schlieben NH, Niefind K, Müller J, Riebel B, Hummel W, Schomburg D. Atomic
resolution structures of R-specific alcohol dehydrogenase from Lactobacillus
brevis provide the structural bases of its substrate and cosubstrate specificity.
J Mol Biol 2005;349:801–13.
[42] Kavanagh KL, Jörnvall H, Persson B, Oppermann U. The SDR superfamily: func-
tional and structural diversity within a family of metabolic and regulatory
enzymes. Cell Mol Life Sci 2008;65:3895–906.
[43] Hoffmann F, Maser E. Carbonyl reductases and pluripotent hydroxysteroid
dehydrogenases of the short-chain dehydrogenase/reductase superfamily.
Drug Metab Rev 2007;39:87–144.
1
1
2
-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine and
-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine.
002;45:1321–9.
J Med Chem
[
[
[
[
19] Zhu D, Yang Y, Hua L. Stereoselective enzymatic synthesis of chiral alcohols
with the use of a carbonyl reductase from Candida magnoliae with anti-Prelog
enantioselectivity. J Org Chem 2006;71:4202–5.
20] Lavandera I, Kern A, Ferreira-Silva B, Glieder A, de Wildeman S, Kroutil W. Stere-
oselective bioreduction of bulky-bulky ketones by a novel ADH from Ralstonia
sp. J Org Chem 2008;73:6003–5.
21] Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J. Chiral alcohol production by
NADH-dependent phenylacetaldehyde reductase coupled with in situ regener-
ation of NADH. Eur J Biochem 2002;269:2394–402.
22] Uehling DE, Donaldson KH, Deaton DN, Hyman CE, Sugg EE, Barrett DG, et al.
Synthesis and evaluation of potent and selective beta(3) adrenergic receptor
agonists containing acylsulfonamide, sulfonylsulfonamide, and sulfonylurea
carboxylic acid isosteres. J Med Chem 2002;45:567–83.
23] Kataoka M, Ishige T, Urano N, Nakamura Y, Sakuradani E, Fukui S, et al.
Cloning and expression of the l-1-amino-2-propanol dehydrogenase gene from
Rhodococcus erythropolis, and its application to double chiral compound pro-
duction. Appl Microbiol Biotechnol 2008;80:597–604.
24] Dorokhova MI, Smolina NE, Tikhonova Ya.O., Mikhalev VA. Inversion of con-
figuration of optically active 1-m-nitrophenyl-2-methylaminoethanols. Pharm
Chem J 1974;8:209–11.
25] Marín A, García E, García A, Barbas C. Validation of a HPLC quantification of
acetaminophen, phenylephrine and chlorpheniramine in pharmaceutical for-
mulations: capsules and sachets. J Pharm Biomed Anal 2002;29:701–14.
[
[
[
[
[44] van der Werf MJ, van der Ven C, Barbirato F, Eppink MH, de Bont JA, van Berkel
WJ. Stereoselective carveol dehydrogenase from Rhodococcus erythropolis
DCL14. A novel nicotinoprotein belonging to the short chain dehydroge-
nase/reductase superfamily. J Biol Chem 1999;274:26296–304.
[45] Pennacchio A, Pucci B, Secundo F, La Cara F, Rossi M, Raia CA. Purification and
characterization of a novel recombinant highly enantioselective short-chain
NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus. Appl
Environ Microbiol 2008;74:3949–58.
26] Ptácek P, Klíma J, Macek J. Development and validation of
a liquid
chromatography–tandem mass spectrometry method for the determination
of phenylephrine in human plasma and its application to a pharmacokinetic
study. J Chromatogr B Analyt Technol Biomed Life Sci 2007;858:263–8.
27] Armstrong DW, Lee JT, Chang LW. Enantiomeric impurities in chiral cata-
lysts, auxiliaries and synthons used in enantioselective synthesis. Tetrahedron:
Asymmetry 1998;9:2043–64.
[