M. J. C. Marenco et al. / Tetrahedron Letters 53 (2012) 670–673
673
References and notes
1
.
.
Hentze, M. W.; Muckenthaler, M. U.; Galy, B.; Camaschella, C. Cell 2010, 142,
4–38.
Lieu, P. T.; Heiskala, M.; Peterson, P. A.; Yang, Y. Mol. Aspects Med. 2001, 22, 1–
7.
2
2
8
3.
4.
5.
Kalinowski, D.; Richardson, D. Pharmacol. Rev. 2005, 57, 547–583.
Barnham, K.; Masters, C.; Bush, A. Nat. Rev. Drug Disc. 2004, 3, 205–214.
Green, D.; Antholine, W.; Wong, S.; Richardson, D.; Chitambar, C. Clin. Cancer
Res. 2001, 7, 3574–3579.
6
7
8
.
.
.
British National Formulary; Royal Pharmaceutical Society of Great Britain, 2009.
Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551–8588.
(a) Moore, E. C.; Booth, B. A.; Sartorel, A. C. Cancer Res. 1971, 31, 235; (b)
Sartorel, A. C.; Agrawal, K. C.; Moore, E. C. Biochem. Pharmacol. 1971, 20, 3119;
(
c) Spingarn, N.; Sartorelli, A. Abstr. Pap. Am. Chem. Soc. 1978, 175, 64; (d) Finch,
R.; Liu, M.; Grill, S.; Rose, W.; Loomis, R.; Vasquez, K.; Cheng, Y.; Sartorelli, A.
Biochem. Pharmacol. 2000, 59, 983–989.
9.
Lovejoy, D.; Richardson, D. Blood 2002, 100, 666–676.
1
0. UV and Fluorescence Spectroscopy: Absorbance measurements were recorded on
a Varian Cary 50 Spectrometer using 10 mm quartz cuvettes. Fluorescence
measurements were recorded on a Cary Eclipse fluorimeter using 10 mm
quartz cuvettes. Excitation slit size was 5 nm and emission slit size was 5 nm.
Synthesis of NT: 2-hydroxy-1-naphthaldehyde (0.5 g, 2.9 mmol) was added to
N-phenylhydrazinecarbothioamide (0.49 g, 2.9 mmol) in DMF (15 mL) at room
temperature. After stirring for 18 h, the solvent was evaporated under reduced
pressure and the crude product recrystallised from hot EtOH. The resulting
Figure 6. Plot of fluorescence against pH for NT. [NT] = 10 lM.
be 10.62 using a derivation of the Henderson Hasselbach equation
by plotting Àlog(FmaxÀF)/(FÀFmin) against pH.18 Importantly, how-
ever, the fluorescence–pH titration showed that the emission
intensity of NT remained constant in the physiological range.
1
yellow crystals were dried in vacuo to yield 0.61 g of 1 (65% yield).
(500 MHz, DMSO-d ): 6.95 (2H, m, Ar-H), 7.14 (3H, m, Ar-H), 7.32 (3H, m, Ar-
H), 7.61 (2H, m, Ar-H), 8.23 (1H, s, Ar-H), 8.90 (1H, s, CH@N), 9.80 (1H, s, NH),
H NMR
In summary, we have utilised NT as an ‘Off–On’ ratiometric
6
fluorescence sensor for Fe3+ operable in semi aqueous solution.
1
1
0.34 (1H, s, OH), 11.50 (1H, s, NH). 13C NMR (125 MHz DMSO-d
19.0, 124.0, 125.6, 128.6, 129.2, 132.1, 133.1, 139.7, 144.0, 157.1. MS:
SO = 321.4, found 321.1.
6
): 110.2,
This compound displayed good selectivity for Fe3 when tested
+
against a range of physiological and environmentally important
15 3
Calculated for C18H N
1
1
1. Issa, R. M.; Khedr, A. M.; Rizk, H. J. Chin. Chem. Soc. 2008, 55, 875–884.
2. Singh, N.; Kaur, N.; Mulrooney, R. C.; Callan, J. F. Tetrahedron Lett. 2008, 49,
ions and was sensitive in the 17–37 lM range. The fluorescence
enhancement upon binding Fe3 was attributed to a cancellation
of the C@N isomerisation that otherwise leads to non-radiative de-
cay of the excited state. The binding stoichiometry was confirmed
+
6
690–6692.
13. Antholine, W.; Knight, J.; Whelan, H.; Petering, D. Mol. Pharmacol. 1977, 13, 89–
8.
14. Bhardwaj, V. K.; Pannu, A. P. S.; Singh, N.; Hundal, M. S.; Hundal, G. Tetrahedron
008, 64, 5384–5391.
15. (a) Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197–202; (b) Singh, N.;
Mulrooney, R. C.; Kaur, N.; Callan, J. F. J. Fluoresc. 2009, 19, 777–782; (c) Singh,
N.; Kaur, N.; Dunn, J.; MacKay, M.; Callan, J. F. Tetrahedron Lett. 2009, 50, 953–
9
3
+
as 1:1 (NT/Fe ) and the binding constant logb was determined as
.56. Examples of enhancement based ratiometric fluorescence
2
4
3
+
sensors for Fe are extremely rare and to the best of our knowl-
edge, NT is the first reported example of an enhancement based
fluorescence probe for Fe3 that operates via the suppression of
C@N isomerisation. In addition, we believe that this provides a
good example of how already synthesised molecules can be uti-
lised for a different purpose. We are currently investigating other
known iron-chelating compounds for their potential as optical iron
sensors.
956.
+
16. Espada-Bellido, E.; Dolores Galindo-Riano, M.; Garcia-Vargas, M.;
Narayanaswamy, R. Appl. Spectrosc. 2010, 64, 727–732.
1
1
7. (a) De Silva, A.; Gunaratne, H. J. Chem. Soc., Chem. Commun. 1990, 186–188; (b) De
Silva, A.; Gunaratne, H.; Lynch, P. J. Chem. Soc., Perkin Trans. 2 1995, 685–690.
8. Kamila, S.; Callan, J. F.; Mulrooney, R. C.; Middleton, M. Tetrahedron Lett. 2007,
48, 7756–7760.