Paper
RSC Advances
11 C. H. Lu, S. W. Kuo, C. F. Huang and F. C. Chang, J. Phys.
Chem. C, 2009, 113, 3517–3524.
Conclusion
12 S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 2011, 36, 1649–
1696.
The non-conjugated copolymer hybrid materials containing the
carrier-transporting carbazole units, iridium complex phos-
phorescence units and nano-scale particles POSS were prepared
and studied. Compared to binary copolymers, the energy
transfer from host to guest in the ternary copolymers is more
efficient both in the solid state and in solution, and quantum
efficiency (Fpl ¼ 24.5–52.4%) of the ternary copolymers are
much higher than those of the binary copolymers (Fpl ¼ 7.0–
24.2%) in their solid state, which indicates that incorporation of
the POSS as pendant group into the polymer backbone can
promote the luminescence properties of the copolymers
dramatically. The photoluminescence decays of all copolymers
in solid state follow bi-exponential and their phosphorescence
lifetimes are 0.28–1.60 ms. The ternary copolymers exhibit good
solubility in common organic solvents, and better lm forma-
tion property for the solution processing techniques. Besides,
there is a practical prospect for the free radical copolymeriza-
tion method which is convenient and easy to purify.
13 T. F. Zhang, J. Z. Wang, M. X. Zhou, L. Ma, G. Z. Yin,
G. X. Chen and Q. F. Li, Tetrahedron, 2014, 70, 2478–2486.
14 J. M. Kang, H. J. Cho, J. Lee, J. I. Lee, S. K. Lee, N. S. Cho,
D. H. Hwang and H. K. Shim, Macromolecules, 2006, 39,
4999–5008.
15 V. Ervithayasuporn, J. Abe, X. Wang, T. Matsushima,
H. Murata and Y. Kawakami, Tetrahedron, 2010, 66, 9348–
9355.
16 J. Lee, H. J. Cho, B. J. Jung, N. S. Cho and H. K. Shim,
Macromolecules, 2004, 37, 8523–8529.
17 C. H. Chou, S. L. Hsu, K. Dinakaran, M. Y. Chiu and
K. H. Wei, Macromolecules, 2005, 38, 745–751.
18 S. Xiao, M. Nguyen, X. Gong, Y. Cao, H. B. Wu, D. Moses and
A. J. Heeger, Adv. Funct. Mater., 2003, 13, 25–29.
19 H. J. Cho, D. H. Hwang, J. I. Lee, Y. K. Jung, J. H. Park, J. Lee,
S. K. Lee and H. K. Shim, Chem. Mater., 2006, 18, 3780–
3787.
20 J. D. Froehlich, R. Young, T. Nakamura, Y. Ohmori, S. Li,
A. Mochizuki, M. Lauters and G. E. Jabbour, Chem. Mater.,
2007, 19, 4991–4997.
Conflicts of interest
There are no conicts to declare.
21 W. J. Lin, W. C. Chen, W. C.Wu, Y. H. Niu and A. K.-Y. Jen,
Macromolecules, 2004, 37, 2335–2341.
22 Y. L. Chu, C. C. Cheng, Y. P. Chen, Y. C. Yen and F. C. Chang,
J. Mater. Chem., 2012, 22, 9285–9292.
23 X. H. Yang, J. D. Froehlich, H. S. Chae, S. Li, A. Mochizuki
and G. E. Jabbour, Adv. Funct. Mater., 2009, 19, 2623–2629.
24 W. Y. Lai, J. W. Levell, P. L. Burn, S. C. Lo and
I. D. W. Samuel, J. Mater. Chem., 2009, 19, 4952–4959.
25 K. B. Chen, Y. P. Chang, S. H. Yang and C. S. Hsu, Thin Solid
Films, 2006, 514, 103–109.
26 D. M. Sun, Z. J. Ren, M. R. Bryce and S. K. Yan, J. Mater.
Chem. C, 2015, 3, 9496–9508.
27 M. Singh, H. S. Chae, J. D. Froehlich, T. Kondou, S. Li,
A. Mochizuki and G. E. Jabbour, So Matter, 2009, 5, 3002–
3005.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21374017 and 21574021), Natural Science
Foundation of Fujian Province (2017J01683), Program for
Innovative Research Team in Science and Technology in Fujian
Province University (IRTSTFJ).
Notes and references
1 F. Wang, X. H. Lu and C. B. He, J. Mater. Chem., 2011, 21,
2775–2782.
2 D. B. Cordes, P. D. Lickiss and F. Rataboul, Chem. Rev., 2010,
110, 2081–2173.
3 J. Huang, W. N. Wang, J. J. Gu, W. Z. Li, Q. H. Zhang, Y. Ding, 28 X. H. Yang, J. D. Froehlich, H. S. Chae, B. T. Harding, S. Li,
K. Xi, Y. X. Zheng and X. D. Jia, Polymer, 2014, 55, 6696–6707.
4 D. Y. Kim, S. Kim, S. A. Lee, Y. E. Choi, W. J. Yoon, S. W. Kuo,
A. Mochizuki and G. E. Jabbour, Chem. Mater., 2010, 22,
4776–4782.
C. H. Hsu, M. J. Huang, S. H. Lee and K. U. Jeong, J. Phys. 29 T. Z. Yu, Z. X. Xu, W. M. Su, Y. L. Zhao, H. Zhang and
Chem. C, 2014, 118, 6300–6306.
Y. J. Bao, Dalton Trans., 2016, 45, 13491–13502.
5 H. M. Lin, K. H. Hseih and F. C. Chang, Microelectron. Eng., 30 L. Deng, P. T. Furuta, S. Garon, J. Li, D. Kavulak,
2008, 85, 1624–1628.
M. E. Thompson and J. M. J. Frechet, Chem. Mater., 2006,
¨
¨
6 T. Seckin, S. Koytepe and H. I. Adıguzel, Mater. Chem. Phys.,
18, 386–395.
2008, 112, 1040–1046.
7 Y. L. Liu and M. H. Fangchiang, J. Mater. Chem., 2009, 19,
3643–3647.
31 M. J. Lin, D. D. Li, X. P. Wang, C. P. Luo and Q. D. Ling,
J. Macromol. Sci., Part A: Pure Appl. Chem., 2016, 53, 222–
226.
8 D. X. Wang, L. G. Li, W. Y. Yang, Y. J. Zuo, S. Y. Feng and 32 M. Nonoyama, Bull. Chem. Soc. Jpn., 1974, 47, 767–768.
H. Z. Liu, RSC Adv., 2014, 4, 59877–59884.
9 L. G. Li, S. Y. Feng and H. Z. Liu, RSC Adv., 2014, 4, 39132–
39139.
33 S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq,
R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau and
M. E. Thompson, Inorg. Chem., 2001, 40, 1704–1711.
10 T. Hirai, M. Leolukman, C. C. Liu, E. Han, Y. J. Kim, 34 J. D. Lichtenhan, Y. A. Otonari and M. J. Carr,
Y. Ishida, T. Hayakawa, M. A. Kakimoto, P. F. Nealey and
Macromolecules, 1995, 28, 8435–8437.
P. Gopalan, Adv. Mater., 2009, 21, 4334–4338.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 39512–39522 | 39521