I. Vicente et al. / Applied Catalysis A: General 408 (2011) 31–37
37
Fig. 10. TEM images of samples (a) Nie/1-H1 ×500k and (b) Nie/2pH7-H1 ×500k.
(
70%, Fig. 9) and the catalyst deactivation could suppose that not
[2] K. Bauer, D. Garbe, H. Surburg, Common Fragrance, Flavor Mate-
rials Preparation, Properties and Uses, Wiley-VCH, Holzminden,
only the hydrazine that blocked the metal sites was eliminated, but
also the hydrazine that blocked the acid ones.
2001.
[
3] C.V. Rode, M.M. Telkara, R.V. Chaudhar, in: A. Corma, F.V. Melo, S. Mendioroz,
J.L.G. Fierro (Eds.), Studies in Surface Science and Catalysis, Elsevier, Amster-
dam, 2000, pp. 533–538.
4
. Conclusions
[
[
4] E.L. Eliel, D.W. Delmonte, J. Org. Chem. 21 (1956) 596–597.
5] S. Krishnamurthy, R.M. Schubert, H.C. Brown, JACS 95 (1973) 8486–8487.
The use of microwaved-synthesised hectorites as supports of
[6] R. Sreekumar, R. Padmakumar, P. Rugmini, Tetrahedron Lett. 39 (1998)
695–2696.
2
nickel nanoparticles for the catalytic hydrogenation of styrene
oxide resulted in high active, high selective to 2-phenylethanol and
high resistant to deactivation catalytic systems.
[
[
7] T.F. Wood, N.J. Clifton, US Patent 2524096 (1950).
8] C.A. Gibson, L.F. Theiling, US Patent 4,064,186 (1977).
[9] S. Mitsui, S. Imaizumi, M. Hisashige, Y. Sugi, Tetrahedron 29 (1973)
4093–4097.
The activity of Ni/hectorite, obtained from impregnation of hec-
torites with nickel nitrate and later calcination–reduction, mainly
depended on the use of microwave during hectorite synthesis, the
nickel content and the hectorite purity. These results were related
to the presence of different amounts and accessibility of acid sites,
and also to metal nickel sites with different activity since different
NiO–hectorite interactions were observed by TPR for their pre-
cursors. Ni/hectorites, prepared by Ni2 cation exchange of one
hectorite synthesised with microwaves and later calcined–reduced,
showed lower conversion, lower selectivity to 2-phenylethanol and
higher selectivity to phenylacetaldehyde than impregnated cata-
lysts. Conversion and selectivity to 2-PEA increased when higher
amount of hydrazine, which was used as reducing agent, was
removed. However, the hydrazine elimination was not selective
for the metal sites. The phenylacetaldehyde formation and the cat-
alyst deactivation could be explained by the accessibility to the acid
sites.
[
[
10] V.G. Yadav, S.B. Chandalia, Org. Proc. Res. Dev. 2 (1998) 294–297.
11] O. Bergadà, P. Salagre, Y. Cesteros, F. Medina, J.E. Sueiras, Appl. Catal. A: Gen.
331 (2007) 19–25.
[12] O. Bergadà, P. Salagre, Y. Cesteros, F. Medina, J.E. Sueiras, Contr. Catal. Lett. 122
2008) 259–266.
(
[
13] O. Bergadà, E. Boix, P. Salagre, Y. Cesteros, F. Medina, J.E. Sueiras, Appl. Catal. A:
Gen. 368 (2009) 163–169.
[14] M.D. González, Y. Cesteros, P. Salagre, F. Medina, J.E. Sueiras, Micropor. Mesopor.
Mater. 118 (2009) 341–347.
+
[
15] I. Salla, O. Bergadà, P. Salagre, F. Medina, J.E. Sueiras, T. Montanari, J. Catal. 232
2005) 239–245.
[16] X. Liu, C. Breen, Macromol. Rapid Commun. 26 (2005) 1081–1086.
(
[
[
17] S. Xue, T.J. Pinnavaia, Micropor. Mesopor. Mater. 107 (2008) 134–140.
18] M. Casagrande, L. Storaro, M. Lenarda, S. Rossini, Catal. Commun. 6 (2005)
568–572.
[19] R.S. Varma, Tetrahedron 58 (2002) 1235–1255.
[
[
20] J.T. Kloprogge, E. Komarneni, S.J. Amonette, Clays Clay Miner. 47 (1999)
29–554.
21] I. Vicente, P. Salagre, Y. Cesteros, F. Guirado, F. Medina, J.E. Sueiras, Appl. Clay
Sci. 43 (2009) 103–107.
5
[22] I. Vicente, P. Salagre, Y. Cesteros, Phys. Proc. 8 (2010) 88–93.
23] R.B. De Lima, V. Paganin, T. Iwasita, W. Vielstich, Electrochim. Acta 49 (2003)
5–91.
[24] Z. Li, C. Han, J. Shen, J. Mater. Sci. 41 (2006) 3473–3480.
[
8
Acknowledgments
[
[
[
25] R.W. Cheary, A.A. Coelho, J. Appl. Cryst. 25 (1992) 109–121.
26] A.A. Coelho, TOPAS v3.0, Bruker AXS, 2005.
27] A.R. Stokes, A.J.C. Wilson, Proc. Camb. Philos. Soc. 38 (1942) 313–322.
The authors are grateful for the financial support of the
Ministerio de Educación y Ciencia of Spain and FEDER funds
[28] F. Bergaya, M. Vayer, Appl. Clay Sci. 12 (1997) 275–280.
[29] J.T. Kloprogge, R.L. Frost, Vib. Spectrosc. 23 (2000) 119–127.
(
CTQ2008-04433/PPQ) and for the FPU Grant (AP2006-00835) also
[
30] J.D. Rusell, A.R. Fraser, in: M.J. Wilson (Ed.), Clay Mineralogy: Spectro-
scopic and Chemical Determinative Methods, Chapman & Hall, London, 1994,
pp. 11–67.
financed by the Ministerio de Educación y Ciencia of Spain.
References
[31] I. Vicente, P. Salagre, Y. Cesteros, Appl. Clay Sci. 53 (2011) 212–219.
32] C.V. Rode, M.M. Telkar, R. Jaganathan, R.V. Chaudhari, J. Mol. Catal. A: Chem.
00 (2003) 279–290.
[
2
[1] B.D. Mookherjee, R.A. Wilson, R.E. Kirk, Encyclopedia of Chemical Technology,
vol. 4, fourth ed., Jonh Wiley, New York, 1996.