U. Filek et al. / Catalysis Today 169 (2011) 150–155
155
ence of both metallic copper and copper Cu+ ions. The formation
of metallic copper allows accepting that reduction is accompanied
by the formation of free heteropolyacid in the process analogous
to that shown by Eq. (1). In the oxygen free helium, the main prod-
ucts of catalytic ethanol conversion are ethylene, diethyl ether and
water. Furthermore, the typical products of reactions are formed
on Brønsted acid centers. In the present case the latter are supplied
by free heteropolyacid. On the other hand, in the presence of air,
acetaldehyde is predominantly obtained in catalytic reaction. Such
reaction occurs on redox centers and is ascribed to the presence of
catalytic redox centers formed by reduced copper.
L3M45M45
B
A
References
[1] Y. Ono, T. Baba, Proc. 8th Int. Congr. on Catalysis, Berlin, vol. 5, Verlag Chemie,
Weinhem, 1984, p. 405.
[2] Y. Ono, M. Taguchi, Gerile, S. Suzuki, T. Baba, in: B. Imelik, et al. (Eds.), Catalysis
by Acid and Basis, Elsevier Science Publisher, 1985.
[3] L. Matachowski, R.P. Socha, D. Mucha, M. Zimowska, J. Gurgul, Surf. Interf. Anal.
42 (2010) 757–761.
[4] T. Baba, H. Watanabe, Y. Ono, J. Phys. Chem. 87 (1983) 2406–2411.
[5] T. Baba, J. Sakai, Y. Ono, Bull. Chem. Soc. Jpn. 55 (1982) 2657–2658.
[6] M.A. Parent, J.B. Moffat, Langmuir 12 (1996) 3733–3739.
[7] M.A. Parent, J.B. Moffat, Catal. Lett. 60 (1999) 191–197.
[8] A. Miyaji, T. Okuhara, Catal. Today 81 (2003) 43–49.
[9] A. Miyaji, R. Ohnishi, T. Okuhara, Appl. Catal. A: Gen. 262 (2004) 143–148.
[10] K. Na, T. Okuhara, M. Misono, J. Catal. 170 (1997) 96–107.
[11] A. Miyaji, T. Echizen, K. Nagata, Y. Yoshinaga, T. Okuhara, J. Mol. Catal. A: Chem.
201 (2003) 145–153.
Cu0
Cu2+
Cu0
Cu+
905
910
915
920
925
Kinetic Energy (eV)
[12] T. Okuhara, T. Yamada, K. Seki, K. Johkan, T. Nakato, Micropor. Mesopor. Mater.
21 (1998) 637–643.
Fig. 10. XAES Cu L3M45M45 spectra for Cu3P2W18O62 prereduced in ethanol at 250 ◦
C
[13] D.S. Mansilla, M.R. Torviso, E.N. Alesso, P.G. Vázquez, C.V. Cáceres, Appl. Catal.
A: Gen. 375 (2010) 196–204.
[14] N. Laronze, J.-F. Moisan, C. Roch-Marchal, F.-X. Liu, G. Hervé, J. Cluster Sci. 13
(a) and after catalytic reaction with ethanol at 250 ◦C (b).
(2002) 355–368.
[15] T. Kasza, A. Bielan´ ski, Catal. Lett. 128 (2009) 307–312.
[16] W.M.H. Sachtler, Z.C. Zhang, in: G. Ertl, H. Knötzinger, F. Schüth, J. Weitkzmip
(Eds.), Handbook of Heterogeneous Catalysis, vol. 3, second ed., J. Wiley VCH,
2008, p. 510.
[17] T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113–252.
[19] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, J. Chastain (Eds.), Handbook
of X-ray Photoelectron Spectroscopy, PerkinElmer Corp., USA, 1992.
[20] S.Y. Lee, N. Mettlach, N. Nguyen, Y.M. Sun, J.M. White, Appl. Surf. Sci. 206 (2003)
102–109.
4. Conclusions
X-ray microanalysis shows that both tungsten and copper are
uniformly distributed on the surface of pristine copper salt of
Wells–Dawson heteropolyacid H6P2W18O62. However, after the
reduction in ethanol vapors at 250 ◦C the form of patches composed
of needle-like crystallites appear at the surface leading to local
enrichments in copper. The XPS measurements indicate the pres-