Anal. Chem. 2003, 75, 5936-5943
Femtomolar Detection of Prostate-Specific
Antigen: An Immunoassay Based on
Surface-Enhanced Raman Scattering and
Immunogold Labels
Desiree S. Grubisha, Robert J. Lipert,* Hye-Young Park, Jeremy Driskell, and Marc D. Porter*
Microanalytical Instrumentation Center, Ames LaboratorysUSDOE, and Department of Chemistry, Iowa State University,
Ames, Iowa 50011
tering (SERS),14-16 quantum dots,17-22 microcantilevers,23,24 and
atomic force microscopy25-27 have been devised. Because of its
inherently high sensitivity, fluorescence-based detection is among
the most used readout modality.
This paper describes our latest findings from a continuing
investigation of SERS as a multiplexed, immunoassay readout
concept.16 In its traditional formats (i.e., normal and resonance),
A novel reagent for low-level detection in immunoadsor-
bent assays is described. The reagent consists of gold
nanoparticles modified to integrate bioselective species
(e.g., antibodies) with molecular labels for the generation
of intense, biolyte-selective surface-enhanced Raman scat-
tering (SERS) responses in immunoassays and other
bioanalytical applications. The reagent is constructed by
coating gold nanoparticles (3 0 nm) with a monolayer of
an intrinsically strong Raman scatterer. These monolayer-
level labels are bifunctional by design and contain disul-
fides for chemisorption to the nanoparticle surface and
succinimides for coupling to the bioselective species.
There are two important elements in this label design; it
both minimizes the separation between label and particle
surface and maximizes the number of labels on each
particle. This approach to labeling also exploits several
other advantages of SERS-based labels: narrow spectral
bandwidth, resistance to photobleaching and quenching,
and long-wavelength excitation of multiple labels with a
single excitation source. The strengths of this strategy are
demonstrated in the detection of free prostate-specific
antigen (P SA) using a sandwich assay format based on
monoclonal antibodies. Detection limits of ∼1 pg/ mL in
human serum and ∼4 pg/ mL in bovine serum albumin
have been achieved with a spectrometer readout time of
6 0 s. The extension of the method to multianalyte assays
(e.g., the simultaneous determination of the many com-
plexed forms of P SA) is discussed.
(5) Brown, C. R.; Higgins, K. W.; Frazer, K.; Schoelz, L. K.; Dyminski, J. W.;
Marinkovich, V. A.; Miller, S. P.; Burd, J. F. Clin. Chem. 1 9 8 5 , 31, 1500-
5.
(6) Hayes, F. J.; Halsall, H. B.; Heineman, W. R. Anal. Chem. 1 9 9 4 , 66, 1860-
5.
(7) Butler, J. E. J. Immunoassay 2 0 0 0 , 21, 165-209.
(8) Lyon, L. A.; Musick, M. D.; Natan, M. J. Anal. Chem. 1 9 9 8 , 70, 5177-83.
(9) Knoll, W.; Zizlsperger, M.; Liebermann, T.; Arnold, S.; Badia, A.; Liley, M.;
Piscevic, D.; Schmitt, F. J.; Spinke, J. Colloids Surf., A 2 0 0 0 , 161, 115-37.
(10) Liebermann, T.; Knoll, W.; Sluka, P.; Herrmann, R. Colloids Surf. A 2 0 0 0 ,
169, 337-50.
(11) Nelson, B. P.; Grimsrud, T. E.; Liles, M. R.; Goodman, R. M.; Corn, R. M.
Anal. Chem. 2 0 0 1 , 73, 1-7.
(12) Lee, H. J.; Goodrich, T. T.; Corn, R. M. Anal. Chem. 2 0 0 1 , 73, 5525-31.
(13) Wegner, G. J.; Lee, H. J.; Corn, R. M. Anal. Chem. 2 0 0 2 , 74, 5161-8.
(14) Rohr, T. E.; Cotton, T.; Fan, N.; Tarcha, P. J. Anal. Biochem. 1 9 8 9 , 182,
388-98.
(15) Dou, X.; Takama, T.; Yamaguchi, Y.; Yamamoto, H.; Ozaki, Y. Anal. Chem.
1 9 9 7 , 69, 1492-5.
(16) Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D. Anal. Chem. 1 9 9 9 , 71,
4903-8.
(17) Chan, W. C. W.; Nie, S. Science (Washington, D. C.) 1 9 9 8 , 281, 2016-8.
(18) Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V.
C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2 0 0 0 , 122, 12142-
50.
(19) Sun, B.; Xie, W.; Yi, G.; Chen, D.; Zhou, Y.; Cheng, J. J. Immunol. Methods
2 0 0 1 , 249, 85-9.
(20) Goldman, E. R.; Anderson, G. P.; Tran, P. T.; Mattoussi, H.; Charles, P. T.;
Mauro, J. M. Anal. Chem. 2 0 0 2 , 74, 841-7.
A host of different immunoassay readout techniques has been
developed in past years.1 The more established approaches include
scintillation counting,2 fluorescence,3,4 chemiluminescence,5 elec-
trochemical,6 and enzymatic methods.1,7 Recently, strategies based
on surface plasmon resonance,8-13 surface-enhanced Raman scat-
(21) Speckman, D. M.; Jennings, T. L.; LaLumondiere, S. D.; Moss, S. C. Mater.
Res. Soc. Symp. Proc. 2 0 0 2 , 676, Y3.6.1-6.
(22) Tran, P. T.; Goldman, E. R.; Anderson, G. P.; Mauro, J. M.; Mattoussi, H.
Proc. SPIE-Int. Soc. Opt. Eng. 2 0 0 2 , 4636, 23-30.
(23) Wu, G.; Datar, R. H.; Hansen, K. M.; Thundat, T.; Cote, R. J.; Majumdar, A.
Nat. Biotechnol. 2 0 0 1 , 19, 856-60.
(24) Grogan, C.; Raiteri, R.; O’Connor, G. M.; Glynn, T. J.; Cunningham, V.; Kane,
M.; Charlton, M.; Leech, D. Biosens. Bioelectron. 2 0 0 2 , 17, 201-7.
(25) Allen, S.; Chen, X.; Davies, J.; Davies, M. C.; Dawkes, A. C.; Edwards, J. C.;
Roberts, C. J.; Sefton, J.; Tendler, S. J.; Williams, P. M. Biochemistry 1 9 9 7 ,
36, 7457-63.
* To whom correspondence should be addressed. E-mail: blipert@
porter1.ameslab.gov.
(1) Immunoassay; Diamandis, E. P., Christopoulos, T. K., Eds.; Academic
Press: New York, 1996.
(2) Gutcho, S.; Mansbach, L. Clin. Chem. 1 9 7 7 , 23, 1609-14.
(3) Vuori, J.; Rasi, S.; Takala, T.; Vaananen, K. Clin. Chem. 1 9 9 1 , 37, 2087-
92.
(4) Xu, Y. Y.; Pettersson, K.; Blomberg, K.; Hemmila, I.; Mikola, H.; Lovgren,
T. Clin. Chem. 1 9 9 2 , 38, 2038-43.
(26) Jones, V. W.; Kenseth, J. R.; Porter, M. D.; Mosher, C. L.; Henderson, E.
Anal. Chem. 1 9 9 8 , 70, 1233-41.
(27) Allen, S.; Chen, X.; Davies, J.; Davies, M. C.; Dawkes, A. C.; Edwards, J. C.;
Roberts, C. J.; Tendler, S. J. B.; Williams, P. M. Appl. Phys. A: Mater. Sci.
Process. 1 9 9 8 , A66, S255-61.
5936 Analytical Chemistry, Vol. 75, No. 21, November 1, 2003
10.1021/ac034356f CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/23/2003