5
824
J. Am. Chem. Soc. 1996, 118, 5824-5825
On the Reduction of Basic Iron Acetate: Isolation
of Ferrous Species Mediating Gif-Type Oxidation of
Hydrocarbons
Bharat Singh,1a Jeffrey R. Long,
1b
Georgia C. Papaefthymiou, and Pericles Stavropoulos*,1a
1c
Department of Chemistry, Boston UniVersity
Boston, Massachusetts 02215
Department of Chemistry, HarVard UniVersity
Cambridge, Massachusetts 02138
Francis Bitter Magnet Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
ReceiVed February 20, 1996
40%).10 These are occasionally contaminated with 3 (py/AcOH
10:1), 2 (py/AcOH 5:1), and colorless crystals of [Zn(O2CCH3)2-
(py)2] (5). Addition of a large excess of Et2O to the py/AcOH
Structurally unspecified iron species have been implicated
2
3
4
in the hydrocarbon-oxidizing Fenton, Udenfriend, and Gif
5
12
systems. Early versions of the Gif system were based on
dioxygen activation by ferrous species in pyridine/acetic acid
reaction filtrates favors the formation of 2. Clearly, enrichment
in AcOH and/or Et2O shifts the pyridine-dependent equilibria
in the order 3 f 4 f 2. Pure 2 is obtained by diffusion of
Et2O into the filtrate of the reduction of 1 with Zn in py/AcOH
(2:1). Feathery crystals of 4 are obtained pure from concentrated
solutions of 3 in py/AcOH (5:1, 2:1) upon addition of Et2O.
Crystals of 4 suitable for X-ray analysis could only be prepared
from 3 in py/Et2O(excess) at 10 °C. In neat pyridine, the
reduction (6 h) of 1 with Zn yields 3 (80%, -20 °C) and a
small amount of a brown-black film. Attempts to crystallize
(
py/AcOH) solutions. The choice of solvents and the selectivity
6
for the ketonization/hydroxylation of certain substrates suggest
6
c
that structural/functional similarities, but also discrepancies,
may exist between active Gif reagents and the diiron site of the
hydroxylase component of soluble methane monooxygenase
(
sMMO).7 To investigate these assumptions, we have selected
IV 8
the basic iron acetate [Fe3O(O2CCH3)6(py)3]‚py (1) (Gif ) as
a point of departure. Pertinent transformations explored in this
study are summarized in Scheme 1.
9
57
Reduction (30 min) of 0.40 mmol of brown-black 1 with
the latter material, which retains Fe(III) according to Fe
excess Zn in 5.0 mL of CH3CN/AcOH (10:1 or 2:1 v/v) or CH2-
M o¨ ssbauer data, have been unsuccessful. Species 3 and 4 are
also obtained by treatment of 1 with iron dust or with H2 (30
psig)/Pd in py or py/AcOH (10:1). A control experiment
confirmed that compounds 3 and 4 are also generated by stirring
Fe in py/AcOH.
Cl2/AcOH (10:1) results in the precipitation (-20 °C) of light
II
10
yellow crystals of [Zn2Fe (O2CCH3)6(py)2] (2, 65%). The
analogous reduction of 1 in py/AcOH (10:1 or 5:1) affords
II
10,11
yellow-green crystals of [Fe (O2CCH3)2(py)4] (3, 80%).
In
contrast, diffusion of Et2O into the original py/AcOH filtrates
at 10 °C yields yellow crystals of [Fe 2(O2CCH3)4(py)3]n (4,
Upon exposure of their py or py/AcOH solutions to pure
dioxygen or air, both 3 and 4 are quantitatively converted to 1.
The reaction of 2 with dioxygen in py/AcOH (2:1) yields red-
II
(
1) (a) Boston University. (b) Harvard University. (c) Massachusetts
1
0
black crystals of [Fe2.22(2)Zn0.78(2)O(O2CCH3)6(py)3]‚py (1′)
Institute of Technology.
12
(
2) (a) Walling, C. Acc. Chem. Res. 1975, 8, 125-131. (b) Stubbe, J.;
(95%) and colorless crystals of [Zn2(O2CCH3)4(py)2] (6, 75%).
Kozarich, J. W. Chem. ReV. 1987, 87, 1107-1136. (c) Sawyer, D. T.; Kang,
C.; Llobet, A.; Redman, C. J. Am. Chem. Soc. 1993, 115, 5817-5818.
1
57
Compound 1′ is distinguished from 1 by its H NMR, Fe
M o¨ ssbauer data (10% Fe(II)), and Fe/Zn ICP microanalyses.10
(
3) Udenfriend, S.; Clark, C. T.; Axelrod, J.; Brodie, B. B. J. Biol. Chem.
1
954, 208, 731-739.
Electron microprobe analysis confirmed that each individual
(
(
4) Barton, D. H. R.; Doller, D. Acc. Chem. Res. 1992, 25, 504-512.
5) Barton, D. H. R.; B e´ vi e` re, S. D.; Chavasiri, W.; Csuhai, E.; Doller,
13
crystal of 1′ contains zinc (Fe:Zn ) 74:26).
Admitting
dioxygen to the filtrate of the reduction (6 h) of 1 by Zn in py
D.; Liu, W.-G. J. Am. Chem. Soc. 1992, 114, 2147-2156.
14
(
6) (a) Barton, D. H. R.; Boivin, J.; Motherwell, W. B.; Ozbalik, N.;
generates [Fe2ZnO(O2CCH3)6(py)3]‚py (1′′). Analogous treat-
ment of 1′′ with Zn dust yields results nearly identical to those
described for 1.
Schwartzentruber, K. M.; Jankowski, K. New J. Chem. 1986, 10, 387-
3
98. (b) Green, J.; Dalton, H. J. Biol. Chem. 1989, 264, 17698-17703. (c)
Froland, W. A.; Andersson, K. K.; Lee, S.-K.; Liu, Y.; Lipscomb, J. D. J.
Biol. Chem. 1992, 267, 17588-17597.
Species 2, 3, 4, and 5 are related by equilibria. When
dissolved in py or py/AcOH, 2 affords quantitative amounts of
(
7) (a) Liu, K. E.; Valentine, A. M.; Wang, D.; Huynh, B. H.;
Edmondson, D. E.; Salifoglou, A.; Lippard, S. J. J. Am. Chem. Soc. 1995,
3
and 5 at -20 °C. Conversely, 0.5 mmol of 3 and 1.0 mmol
1
3
17, 10174-10185. (b) Lipscomb, J. D. Annu. ReV. Microbiol. 1994, 48,
of 5 in py or py/AcOH deposit pure 2 upon addition of Et2O.
Absorption spectra of 2 in py or py/AcOH indicate a greater
than 90% conversion to 3/4. The UV-vis spectrum of 3 in py
71-399.
(
8) Barton, D. H. R.; Boivin, J.; Gastiger, M.; Morzycki, J.; Hay-
Motherwell, R. S.; Motherwell, W. B.; Ozbalik, N.; Schwartzentruber, K.
M. J. Chem. Soc., Perkin Trans. 1 1986, 947-955.
(
λmax 396 nm (ꢀM ) 2107); Beer’s law observed ([3] < 1.0 ×
(
9) Sorai, M.; Kaji, K.; Hendrickson, D. N.; Oh, S. M. J. Am. Chem.
-3
Soc. 1986, 108, 702-708.
10 M)) exhibits a new broad absorption (λmax 424 nm) at
higher concentrations. In the near-IR region, concentrated
solutions of 3 (10 M) or filtrates of the reduction of 1 by Zn
dust in py or py/AcOH demonstrate broad d-d transition bands
(
10) Analytical, spectroscopic and detailed crystallographic data have
been deposited as supporting information. Crystal data for 1′, R32, a )
-
1
3
1
0
1
0
1
0
7.556(4) Å, c ) 10.932(5) Å, V ) 2918(2) Å , T ) 223 K, Z ) 3, R )
.0416, Rw ) 0.0461; 2, P21/n, a ) 10.255(2) Å, b ) 10.756(2) Å, c )
3
2.727(3) Å, â ) 95.56(3)°,V ) 1397.2(5) Å , T ) 223 K, Z ) 2, R )
.0334, Rw ) 0.0362; 3, Pccn, a ) 8.857(7) Å, b ) 16.401(9) Å, c )
(12) Zn(O2CCH3)2‚2H2O consistently crystallizes as [Zn(O2CCH3)2(py)2]
(5) from py or py/AcOH (10:1, 5:1) and as [Zn2(O2CCH3)4(py)2] (6) from
py/AcOH (2:1). Structural details will be published elsewhere.
(13) This result along with preliminary powder X-ray diffraction analysis
of 1, 1′ and 1′′ render it unlikely that domains of 1 and 1′′ are present in
the structure of 1′. Also see: Jang, H. G.; Kaji, K.; Sorai, M.; Wittebort,
R. J.; Geib, S. J.; Rheingold, A. L.; Hendrickson, D. N. Inorg. Chem. 1990,
29, 3547-3556.
3
6.653(10) Å, V ) 2419(3) Å , T ) 223 K, Z ) 4, R ) 0.0391, Rw )
.0383; 4, Pna21, a ) 16.018(4) Å, b ) 9.687(3) Å, c ) 18.107(6) Å, V
3
)
2810(1) Å , T ) 295 K, Z ) 4, R ) 0.0388, wR2 ) 0.0887.
(
11) 3 has been previously synthesized from Fe(II) precursors, but details
of its synthesis and/or characterization were unclear: (a) Catterick, J.;
Thornton, P.; Fitzsimmons, B. W. J. Chem. Soc., Dalton Trans. 1977, 1420-
1
6
425. (b) Hardt, H.-D.; M o¨ ller, W. Z. Anorg. Allg. Chem. 1961, 313, 57-
9. (c) Sheu, C.; Richert, S. A.; Cofr e´ , Ross, B., Jr.; Sobkowiak, A.; Sawyer,
(14) Blake, A. B.; Yavari, A.; Hatfield, W. E.; Sethulekshmi, C. N. J.
Chem. Soc., Dalton Trans. 1985, 2509-2520.
D. T.; Kanofsky, J. R. J. Am. Chem. Soc. 1990, 112, 1936-1942.
S0002-7863(96)00529-X CCC: $12.00 © 1996 American Chemical Society