S. Khaksar et al. / Journal of Fluorine Chemistry 136 (2012) 8–11
11
[16] G. Da-Gong, J. Shun-Jun, Chinese J. Chem. 26 (2008) 578–582.
[17] E. Akgun, U. Pindur, M. Muller, J. Heterocycl. Chem. 20 (1983) 1303–1305.
[18] E. Akgun, M. Tunali, U. Pindur, Arch. Pharm. 320 (1987) 397–401.
J = 1.2 Hz, 3H), 6.97 (d, J = 2.4 Hz, 3H), 7.27 (d, J = 8.7 Hz, 3H), 7.92
(br s, 3H, NH); 13C NMR (CDCl3, 100 MHz):
= 31.7, 55.1, 102.1,
d
111.0, 112.0, 118.8, 124.2, 127.9, 132.5, 153.4.
[19] M. Chakrabarty, S. Sarkar, A. Linden, B.K. Stein, Synth. Commun. 34 (2004)
1801–1810.
[20] Z.H. Zhang, J. Lin, Synth. Commun. 37 (2007) 209–215.
[21] J. Bergman, J. Heterocycl. Chem. 8 (1971) 329–330.
[22] U. Pindur, C. Flo, Arch. Pharm. 323 (1990) 79–81.
[23] L. Selic, B. Stanovnik, Tetrahedron 57 (2001) 3159–3164.
[24] I.A. Shuklov, N.V. Dubrovina, A. Børner, Synthesis (2007) 2925–2943.
[25] J.-P. Be´gue´, D. Bonnet-Delpon, B. Crousse, Synlett 1 (2004) 18–29.
[26] M. Westermaier, H. Mayr, Org. Lett. 8 (2006) 4791–4794.
[27] M.O. Ratnikov, V.V. Tumanov, W.A. Smit, Angew. Chem. Int. Ed. 47 (2008)
9739–9742.
4.1.4. Tris(5-bromo-1H-indol-3-yl)methane (3i)
mp = 260–262 8C, IR (KBr): 3428, 2924, 1562, 1457, 1417, 1213,
1090, 868 cmÀ1. 1H NMR (CDCl3, 400 MHz):
= 6.06 (s, 1H), 6.98 (s,
d
3H), 7.13 (d, J = 8.4 Hz, 3H), 7.32 (d, J = 8.4 Hz, 3H), 7.50 (s, 3H), 7.90
(br s, 3H, NH); 13C NMR (CDCl3, 100 MHz):
118.1, 122.0, 123.9, 125.6, 129.0, 135.9.
d = 30.9, 111.4, 114.2,
[28] M. Westermaier, H. Mayr, Chem. Eur. J. 14 (2008) 1638–1647.
[29] K. De, J. Legros, B. Crousse, D. Bonnet-Delpon, J. Org. Chem. 74 (2009) 6260–6265.
[30] N. Nishiwaki, R. Kamimura, K. Shono, T. Kawakami, K. Nakayama, K. Nishino, T.
Nakayama, K. Takahashi, A. Nakamura, T. Hosokawa, Tetrahedron Lett. 51 (2010)
3590–3592.
[31] J. Choy, S. Jaime-Figueroa, T. Lara-Jaime, Tetrahedron Lett. 51 (2010) 2244–2246.
[32] Y. Kuroiwa, S. Matsumura, K. Toshima, Synlett (2008) 2523–2525.
[33] H. Tanabe, J. Ichikawa, Chem. Lett. 39 (2010) 248–249.
[34] M. Yokota, D. Fujita, J. Ichikawa, Org. Lett. 9 (2007) 4639–4642.
[35] R. Ben-Daniel, S.P. de Visser, S. Shaik, R. Neumann, J. Am. Chem. Soc. 125 (2003)
12116–12117.
4.1.5. Tri(1-methyl-1H-indole-3-yl)methane (3l)
mp = 264–266 8C, IR (KBr): 3048, 1484, 1455, 1418, 1336, 1216,
1009, 801 cmÀ1. 1H NMR (CDCl3, 400 MHz):
= 2.51 (s, 3H), 3.71 (s,
9H), 6.88 (s, 3H), 6.93 (t, J = 7.8 Hz, 3H), 7.17 (t, J = 7.8 Hz, 3H), 7.37
(d, J = 7.8 Hz, 3H), 7.47 (d, J = 7.8 Hz, 3H), 7.92 (br s, 3H, NH); 13C
d
NMR (CDCl3, 100 MHz):
d = 26.7, 34.1, 42.2, 112.4, 117.4, 119.2,
119.8, 122.1, 123.5, 128.5, 137.2.
References
[36] S. Kobayashi, H. Tanaka, H. Amii, K. Uneyama, Tetrahedron 59 (2003) 1547–1552.
[37] K. Neimann, R. Neumann, Org. Lett. 2 (2000) 2861–2863.
[38] K.S. Ravikumar, Y.M. Zhang, J.P. Be´gue´, D. Bonnet-Delpon, Eur. J. Org. Chem. (1998)
2937–2940.
[39] J. Legros, B. Crousse, D. Bonnet-Delpon, J.P. Be´gue´, Eur. J. Org. Chem. (2002)
3290–3293.
[1] R.J. Sundberg, The Chemistry of Indoles, Academic Press, New York, 1970.
[2] B. Holmstedt, J.E. Lindgren, T. Plowman, L. Rivier, R.E. Schultes, O. Tovar, Indole
Alkaloids in Amazonian Myristicaceae: Field and Laboratory Research, Harvard
Botanical Museum Leaflets, 1980.
[3] J.E. Saxton, Chemistry Heterocyclic Compounds, Indoles, vol. 25, Wiley, New York,
1983.
[40] L. Eberson, M.P. Hartshorn, O. Persson, F. Radner, Chem. Commun. (1996)
2105–2112.
[41] A. Heydari, S. Khaksar, M. Tajbakhsh, Synthesis 19 (2008) 3126–3130.
[42] A. Heydari, S. Khaksar, M. Tajbakhsh, Tetrahedron Lett. 50 (2009) 77–80.
[43] A. Heydari, S. Khaksar, M. Tajbakhsh, H.R. Bijanzadeh, J. Fluorine Chem. 130
(2009) 609–614.
[44] A. Heydari, S. Khaksar, M. Tajbakhsh, H.R. Bijanzadeh, J. Fluorine Chem. 131
(2010) 106–110.
[45] S. Khaksar, A. Heydari, M. Tajbakhsh, S.M. Vahdat, J. Fluorine Chem. 131 (2010)
1377–1381.
[46] M. Tajbakhsh, R. Hosseinzadeh, H. Alinezhad, S. Ghahari, A. Heydari, S. Khaksar,
Synthesis (2011) 490–496.
[47] N. Montazeri, S. Khaksar, A. Nazari, S.S. Alavi, S.M. Vahdat, M. Tajbakhsh,
J. Fluorine Chem. 132 (2011) 450.
[48] S. Khaksar, S.M. Ostad, J. Fluorine Chem. 132 (2011) 937.
[49] S. Khaksar, E. Fattahi, E. Fattahi, Tetrahedron Lett. 52 (2011) 5943–5946.
[50] D. Vuluga, J. Legros, B. Crousse, A.M.Z. Slawin, C. Laurence, P. Nicolet, D. Bonnet-
Delpon, J. Org. Chem. 76 (2011) 1126–1133.
[4] R.J. Sundberg, Indoles, Academic Press, San Diego, CA, 1996.
[5] G.W. Gribble, J. Chem. Soc. Perkin Trans. 1 (2000) 1045–1075.
[6] G.R. Humphrey, J.T. Kuethe, Chem. Rev. 106 (2006) 2875–2911.
[7] A. review:, M. Shiri, M.A. Zolfigol, H.G. Kruger, Z. Tanbakouchian, Chem. Rev. 110
(2010) 2250–2293.
[8] M.N. Preobrazhenskaya, A.M. Korolev, I.I. Rozhkov, L.N. Yudina, E.I. Lazhko, E.
Aiello, A.M. Almerico, F. Mingoia, Farmaco 54 (1999) 265–274.
[9] J. Harly-Mason, J.D. Bulock, Biochem. J. 51 (1952) 430–432.
[10] R. Muthyala, A.R. Katritzky, X. Lan, Dyes Pigments 25 (1994) 303–324.
[11] M.R. Mason, T.S. Barnard, M.F. Segla, B. Xie, K. Kirschbaum, J. Chem. Crystallogr. 33
(2003) 531–540.
[12] R. Veluri, I. Oka, I. Wagner-Dobler, H. Laatsch, J. Nat. Prod. 66 (2003) 1520–1523.
[13] T.R. Garbe, M. Kobayashi, M. Shimizu, N. Takesue, M. Ozawa, H. Yukawa, J. Nat.
Prod. 63 (2000) 596–598.
[14] J. Li, L. Wang, B. Li, G. Zhang, Heterocycles 60 (2003) 1307–1315.
[15] Z. Xiao-Fei, J. Shun-Jun, S. Xiao-Ming, Chinese J. Chem. 26 (2008) 413–416.