Journal of the American Chemical Society
Article
PNDI to accommodate the imidazole guests with the lower
density and higher mobility, resulting in the higher proton
conductivity for 2. The conductivity reaches a maximum (9.04
× 10−5 S cm−1 for 1 and 3.49 × 10−4 S cm−1 for 2) at 90 °C.
Among all anhydrous proton conductors, the conductivity of 2
is the highest at the temperatures below 40 °C, and 2 belongs
to anhydrous fast-ion conductors in the temperature range from
40 to 90 °C with the values comparable with those for the best
m a t e r i a l s , H i s @ [ A l ( O H ) ( 1 , 4 - n d c ) ] n a n d
[Zn3(H2PO4)6(H2O)3](Hbim). We will continue working on
the design of new POP-based proton conducting materials and
their fuel cell applications. We believe that our findings will
encourage further work in subzero-temperature proton
conducting materials in the near future.
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the National Natural
Science Foundation of China (21207018, 21273033, and
21203024) and the Fujian Science and Technology Depart-
ment (2014J06003). S.X. gratefully acknowledges the support
of the Recruitment Program of Global Young Experts, Program
for New Century Excellent Talents in University (NCET-10-
0108), and the Award “MinJiang Scholar Program” in Fujian
Province.
EXPERIMENTAL SECTION
■
Preparation of Imidazole-Loaded Frameworks. After syn-
theses of TAPM, Td-PNDI, and Td-PPI (Supporting Information),
Td-PNDI and Td-PPI were finely grounded and then degassed by
heating to 120 °C under reduced pressure for 12 h to remove guest
molecules. Imidazole was vaporized into guest-free Td-PNDI (0.151
g) and Td-PPI (0.151 g) at 120 °C for 36 h to yield 1 and 2. The
amount of loaded imidazole was determined by thermogravimetric
analysis.
REFERENCES
■
(1) Paddison, S. J. Annu. Rev. Mater. Res. 2003, 33, 289.
(2) Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Chem. Mater. 2003, 15,
4896.
(3) (a) Yan, Q.; Toghiani, H.; Lee, Y.-W.; Liang, K.; Causey, H. J.
Power Sources 2006, 160, 1242. (b) Kim, S.; Mench, M. M. J. Power
Sources 2007, 174, 206. (c) Song, M.-K.; Li, H.; Li, J.; Zhao, D.; Wang,
J.; Liu, M. Adv. Mater. 2014, 26, 1277.
(4) (a) Umeyama, D.; Horike, S.; Inukai, M.; Hijikata, Y.; Kitagawa,
S. Angew. Chem., Int. Ed. 2011, 50, 11706. (b) Inukai, M.; Horike, S.;
Umeyama, D.; Hijikatab, Y.; Kitagawa, S. Dalton Trans. 2012, 41,
13261.
(5) (a) Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.;
Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nat. Mater. 2009, 8,
831. (b) Horike, S.; Umeyama, D.; Inukai, M.; Itakura, T.; Kitagawa, S.
J. Am. Chem. Soc. 2012, 134, 7612. (c) Horike, S.; Chen, W.; Itakura,
T.; Inukai, M.; Umeyama, D.; Asakura, H.; Kitagawa, S. Chem.
Commun. 2014, 50, 10241.
(6) (a) Umeyama, D.; Horike, S.; Inukai, M.; Kitagawa, S. J. Am.
Chem. Soc. 2013, 135, 11345. (b) Inukai, M.; Horike, S.; Chen, W.;
Umeyama, D.; Itakura, T.; Kitagawa, S. J. Mater. Chem. A 2014, 2,
10404.
(7) (a) Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C.
I.; Moudrakovski, I. L.; Shimizu, G. K. H. Nat. Chem. 2009, 1, 705.
(b) Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa, S. J.
Am. Chem. Soc. 2012, 134, 12780.
Proton Conductivity Measurement of 1 and 2. The samples
for conductivity measurements were added to a homemade cylindrical
closed glass container with an inner diameter of 0.4 cm and connected
between two stainless steel electrodes. The sample thickness of 2.00
and 2.70 cm, respectively, for 1 and 2 was measured using a vernier
caliper.
Measurements were performed using an impedance and gain-phase
analyzer (Solartron analytical ModuLab 126) over a frequency range
from 100 Hz to 1 MHz with an input voltage amplitude of 100 mV.
The measurement closed glass container was flushed with dry N2
before measurement to remove moisture. The closed glass container
was heated up to 90 °C for a few minutes to make the arrangement of
imidazole molecules regularly oriented. Measurements were taken
under anhydrous conditions and done at thermal equilibrium by
holding for 30 min in the temperature range from −40 to 90 °C.
Proton conductivity was calculated using the following equation
l
σ =
SRs
(1)
(8) Tang, Q.; Liu, Y.; Liu, S.; He, D.; Miao, J.; Wang, X.; Yang, G.;
Shi, Z.; Zheng, Z. J. Am. Chem. Soc. 2014, 136, 12444.
where l and S are the length (cm) and cross-sectional area (cm2) of the
samples, respectively, and Rs, which was extracted directly from the
impedance plots, is the bulk resistance of the sample (Ω). The
activation energy (Ea) for the materials conductivity was estimated
from the following equation
(9) (a) O’Keeffe, M.; Yaghi, O. M. Chem. Rev. 2012, 112, 675.
(b) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
(c) Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.
(d) Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Chem. Rev. 2012, 112, 1126.
(e) Zhou, H. C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415. (f) Zhu,
Q. L.; Xu, Q. Chem. Soc. Rev. 2014, 43, 5468. (g) Lu, W.; Wei, Z.; Gu,
Z. Y.; Liu, T. F.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T., III;
Bosch, M.; Zhou, H. C. Chem. Soc. Rev. 2014, 43, 5561.
(10) (a) Zhang, Z.-J.; Yao, Z.-Z.; Xiang, S.-C.; Chen, B. Energy
Environ. Sci. 2014, 7, 2868. (b) Xiang, S.-C.; He, Y.; Zhang, Z.-J.; Wu,
H.; Zhou, W.; Krishna, R.; Chen, B. Nat. Commun. 2012, 3, 954.
(c) Xiang, S.-C.; Zhang, Z.-J.; Zhao, C.-G.; Hong, K.-L.; Zhao, X.-B.;
Ding, D.; Xie, M.; Wu, C.-D.; Das, M. C.; Gill, R.; Thomas, K. M.;
Chen, B. Nat. Commun. 2011, 2, 204. (d) Xiang, S.-C.; Zhou, W.;
Zhang, Z.-J.; Green, M. A.; Liu, Y.; Chen, B. Angew. Chem., Int. Ed.
2010, 49, 4615. (e) Xiang, S.-C.; Zhou, W.; Gallegos, J. M.; Liu, Y.;
Chen, B. J. Am. Chem. Soc. 2009, 131, 12415. (f) Xiang, S.-C.; Wu, X.-
T.; Zhang, J.-J.; Hu, S.-M.; Fu, R.-B.; Zhang, X.-D. J. Am. Chem. Soc.
2005, 127, 16352.
⎛
⎞
⎟
⎠
Ea
σT = σ exp −
⎜
0
k T
⎝
(2)
B
where σ is the ionic conductivity, σ0 is the preexponential factor, kB is
the Boltzmann constant, and T is the temperature. ZView software was
used to extrapolate impedance data results by means of an equivalent
circuit simulation to complete the Nyquist plot and obtain the
resistance values.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed information regarding the experimental methods and
procedures, and supportive figures and tables. This material is
(11) (a) Yoon, M.; Suh, K.; Natarajan, S.; Kim, K. Angew. Chem., Int.
Ed. 2013, 52, 2688. (b) Horike, S.; Umeyama, D.; Kitagawa, S. Acc.
Chem. Res. 2013, 46, 2376. (c) Yamada, T.; Otsubo, K.; Makiurac, R.;
917
J. Am. Chem. Soc. 2015, 137, 913−918