Page 5 of 7
PleaseC dh oe mn oi ct a al dS cj ui es nt cme argins
Journal Name
ARTICLE
8
93-930; (g) B. M. Trost, Chem. Pharm. Bull. 2002, 50, 1-14.
DOI: 10.1039/C8SC02041H
2
For selected reviews, see: (a) J. Qu and G. Helmchen, Acc.
Chem. Res. 2017, 50, 2539-2555; (b) J. C. Hethcox, S. E.
Shockley and B. M. Stoltz, ACS Catal. 2016,
P. Tosatti, A. Nelson and S. P. Marsden, Org. Biomol. Chem.
012, 10, 3147-3163; (d) W.-B. Liu, J.-B. Xia and S.-L. You,
6, 6207-6213; (c)
2
Iridium-Catalyzed Asymmetric Allylic Substitutions. In
Transition Metal Catalyzed Enantioselective Allylic
Substitution in Organic Synthesis, Kazmaier, U., Ed. Springer
Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 155-207; (e) J.
F. Hartwig and L. M. Stanley, Acc. Chem. Res. 2010, 43, 1461-
1
475; (f) G. Helmchen, A. Dahnz, P. Dubon, M. Schelwies and
R. Weihofen, Chem. Commun. 2007, 675-691; (g) H. Miyabe
and Y. Takemoto, Synlett 2005, 1641-1655.
3
For selected recent examples using achiral (non-prochiral)
carbon nucleophiles, see: (a) S. E. Shockley, J. C. Hethcox and
B. M. Stoltz, Angew. Chem., Int. Ed. 2017, 56, 11545-11548;
(
b) X. Jiang and J. F. Hartwig, Angew. Chem., Int. Ed. 2017, 56,
8
2
887-8891; (c) X. J. Liu and S. L. You, Angew. Chem., Int. Ed.
017, 56, 4002-4005; (d) J. Liu, C.-G. Cao, H.-B. Sun, X. Zhang
and D. Niu, J. Am. Chem. Soc. 2016, 138, 13103-13106; (e) S.
Breitler and E. M. Carreira, J. Am. Chem. Soc. 2015, 137, 5296-
5
299; (f) J. Y. Hamilton, D. Sarlah and E. M. Carreira, J. Am.
Chem. Soc. 2013, 135, 994-997.
Scheme 5 Tentative catalytic cycle for the Ir-catalyzed enantioselective allylic
4
For selected recent examples using prochiral and chiral
carbon nucleophiles, see: (a) X. Huo, J. Zhang, J. Fu, R. He and
W. Zhang, J. Am. Chem. Soc. 2018, 140, 2080-2084; (b) X.
alkylation of coumarins
Jiang, P. Boehm and J. F. Hartwig, J. Am. Chem. Soc. 2018, 140
,
1
239-1242; (c) X. Jiang, J. J. Beiger and J. F. Hartwig, J. Am.
Conclusions
Chem. Soc. 2017, 139, 87-90; (d) Y.-L. Su, Y.-H. Li, Y.-G. Chen
and Z.-Y. Han, Chem. Commun. 2017, 53, 1985-1988; (e) R. He,
P. Liu, X. Huo and W. Zhang, Org. Lett. 2017, 19, 5513-5516;
In conclusion, we have developed the first Ir-catalyzed
enantioselective vinylogous allylic alkylation of coumarins. Our
protocol does not require preactivation of 4-methylcoumarins
and installs unfunctionalized allyl group using easily accessible
linear allylic carbonates as the allylic electrophile. The resulting
(f) X. Jiang, W. Chen and J. F. Hartwig, Angew. Chem., Int. Ed.
2016, 55, 5819-5823; (g) S. Krautwald, D. Sarlah, M. A.
Schafroth and E. M. Carreira, Science 2013, 340, 1065-1068.
For selected examples using hetereoatom nucleophiles, see:
(a) Z.-P. Yang, R. Jiang, C. Zheng and S.-L. You, J. Am. Chem.
Soc. 2018, 140, 3114-3119; (b) Z. P. Yang, C. Zheng, L. Huang,
C. Qian and S. L. You, Angew. Chem., Int. Ed. 2017, 56, 1530-
5
Ir/phosphoramidite-catalyzed
direct
vinylogous
allylic
alkylation reaction produces γ-allylcoumarins in exclusively
branched-selective manner generally in high yields with
excellent level of enantioselectivity. An enantioselective
synthesis of α-unsubstituted γ-allylcoumarin as well as synthetic
elaboration of γ-allylcyanocoumarin to a diverse range of
products have also been demonstrated. Future efforts in this
direction from our laboratory would focus on the studies of
other classes of vinylogous nucleophiles.
1
534; (c) F. Peng, H. Tian, P. Zhang, C. Liu, X. Wu, X. Yuan, H.
Yang and H. Fu, Org. Lett. 2017, 19, 6376-6379; (d) W. B. Liu,
X. Zhang, L. X. Dai and S. L. You, Angew. Chem., Int. Ed. 2012,
51, 5183-5187. (e) M. Roggen and E. M. Carreira, Angew.
Chem., Int. Ed. 2012, 51, 8652-8655. (f) M. Lafrance, M.
Roggen and E. M. Carreira, Angew. Chem., Int. Ed. 2012, 51
3
,
470-3473. (g) M. Roggen and E. M. Carreira, Angew. Chem.,
Int. Ed. 2011, 50, 5568-5571. (h) C. Shu and J. F. Hartwig,
Angew. Chem., Int. Ed. 2004, 43, 4794-4797. (i) T. Ohmura and
J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 15164-15165.
(a) R. Takeuchi and M. Kashio, Angew. Chem., Int. Ed. 1997,
Acknowledgements
6
7
36, 263-265; (b) J. P. Janssen and G. Helmchen, Tetrahedron
This research is funded by Science and Engineering Research
Board (SERB), New Delhi [Grant No. EMR/2016/005045]. R.S.
thanks the Council of Scientific and Industrial Research (CSIR),
New Delhi for a doctoral fellowship.
Lett. 1997, 38, 8025-8026.
M. Chen and J. F. Hartwig, Angew. Chem., Int. Ed. 2014, 53
,
1
2172-12176; Also see: M. Chen and J. F. Hartwig, Angew.
Chem., Int. Ed. 2016, 55, 11651-11655.
8
9
L. Næsborg, K. S. Halskov, F. Tur, S. M. N. Mønsted and K. A.
Jørgensen, Angew. Chem., Int. Ed. 2015, 54, 10193-10197.
W.-B. Liu, N. Okamoto, E. J. Alexy, A. Y. Hong, K. Tran and B.
M. Stoltz, J. Am. Chem. Soc. 2016, 138, 5234-5237. Also see:
S. Rieckhoff, J. Meisner, J. Kästner, W. Frey and R. Peters,
Angew. Chem., Int. Ed. 2018, 57, 1404-1408.
Notes and references
1
For selected reviews, see: (a) D.-F. Chen, Z.-Y. Han, X.-L. Zhou
and L.-Z. Gong, Acc. Chem. Res. 2014, 47, 2365-2377; (b) J. D.
Weaver, A. Recio, A. J. Grenning and J. A. Tunge, Chem. Rev.
1
0 (a) A. K. Simlandy and S. Mukherjee, Org. Biomol. Chem. 2016,
1
2
4, 5659-5664; (b) M. S. Manna and S. Mukherjee, Chem. Sci.
014, 5, 1627-1633; (c) V. Kumar and S. Mukherjee, Chem.
2
011, 111, 1846-1913; (c) S. R. Harutyunyan, T. den Hartog, K.
Geurts, A. J. Minnaard and B. L. Feringa, Chem. Rev. 2008, 108
824-2852; (d) A. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies
,
Commun. 2013, 49, 11203-11205; (d) M. S. Manna and S.
Mukherjee, Chem.–Eur. J. 2012, 18, 15277-15282; (e) A. Ray
2
and M. Diéguez, Chem. Rev 2008, 108, 2796-2823; (e) Z. Lu
and S. Ma, Angew. Chem., Int. Ed. 2007, 47, 258-297; (f) D. A.
Choudhury and S. Mukherjee, Org. Biomol. Chem. 2012, 10
,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins