BULLETIN OF THE
Communication
KOREAN CHEMICAL SOCIETY
of the electron-rich aryl C H bond with I . This result is
consistent with the proposed sorption mechanism.
2
1
1
1
2. D. F. Sava, K. W. Chapman, M. A. Rodriguez, J. A.
Greathouse, P. S. Crozier, H. Zhao, P. J. Chupas, T. M.
Nenoff, Chem. Mater. 2013, 25, 2591.
3. D. F. Sava, M. A. Rodriguez, K. W. Chapman, P. J. Chupas,
J. A. Greathouse, P. S. Crozier, T. M. Nenoff, J. Am. Chem.
Soc. 2011, 133, 12398.
In summary, the effect of functional groups on I adsorption
2
was investigated using MOFs, which were functionalized with
acidic and basic functional groups, as well as the substituent
aryl C H group. Among the UiO-66-X series, UiO-
6
6-(COOH) exhibited the highest I removal efficiency owing
2 2
to the dipole-induced dipole interactions between the carbox-
4. K. W. Chapman, D. F. Sava, G. J. Halder, P. J. Chupas,
T. M. Nenoff, J. Am. Chem. Soc. 2011, 133, 18583.
2
ylic acid group and I molecules. Moreover, UiO-66-(COOH)2
will be beneficial for practical applications as it can be derived
from the reasonably priced pyromellitic acid. In addition, the
15. J. T. Hughes, D. F. Sava, T. M. Nenoff, A. Navrotsky, J. Am.
Chem. Soc. 2013, 135, 16256.
33
M (m-DOBDC) series showed rapid sorption kinetics and high
16. L. J. Small, T. M. Nenoff, ACS Appl. Mater. Interfaces 2017,
2
9, 44649.
removal efficiency because of the chemisorption of I , which
2
4−
1
1
1
7. Z. Wang, Y. Huang, J. Yang, Y. Li, Q. Zhuang, J. Gu, Dalton
was facilitated by the EAS of m-DOBDC . Thus, it is crucial
Trans. 2017, 46, 7412.
to consider the effect of functional groups while designing
8. C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L.
Gasnot, T. Loiseau, Chem. Commun. 2013, 49, 10320.
9. X. Zhang, I. da Silva, H. G. W. Godfrey, S. K. Callear, S. A.
Sapchenko, Y. Cheng, I. Vitórica-Yrezábal, M. D. Frogley,
G. Cinque, C. C. Tang, C. Giacobbe, C. Dejoie, S. Rudi ꢀc ,
A. J. Ramirez-Cuesta, M. A. Denecke, S. Yang, M. Schröder,
J. Am. Chem. Soc. 2017, 139, 16289.
MOFs for effective I adsorption.
2
Acknowledgments. This work was supported by the
National Research Foundation (NRF) of Korea funded by the
Ministry of Science and ICT (NRF-2016M2B2A9912217).
This study was also supported by the DGIST R&D Program
of the Ministry of Science and ICT (20-HRHR-ET-09).
2
0. Y. Q. Hu, M. Q. Li, Y. Wang, T. Zhang, P. Q. Liao, Z.
Zheng, X. M. Chen, Y. Z. Zheng, Chem. Eur. J. 2017,
23, 8409.
Supporting Information. Additional supporting informa-
tion may be found online in the Supporting Information
section at the end of the article.
21. D. Banerjee, X. Chen, S. S. Lobanov, A. M. Plonka, X.
Chan, J. A. Daly, T. Kim, P. K. Thallapally, J. B. Parise, ACS
Appl. Mater. Interfaces 2018, 10, 10622.
2
2. B. Lee, Y.-P. Chen, J. Park, J. Park, ACS Appl. Mater. Inter-
faces 2019, 11, 25817.
References
2
3. A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M.
Wiebcke, P. Behrens, Chem. Eur. J. 2011, 17, 6643.
1
. K. Anzai, N. Ban, T. Ozawa, S. Tokonami, J. Clin. Biochem.
Nutr. 2012, 50, 2.
24. M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U.
Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino,
K. P. Lillerud, Chem. Mater. 2010, 22, 6632.
25. H. Jasuja, G. W. Peterson, J. B. Decoste, M. A. Browe, K. S.
Walton, Chem. Eng. Sci. 2015, 124, 118.
26. B. Mortada, T. A. Matar, A. Sakaya, H. Atallah, Z. Kara Ali,
P. Karam, M. Hmadeh, Inorg. Chem. 2017, 56, 4739.
27. S. Kim, J. Lee, Y. Son, M. Yoon, Bull. Kor. Chem. Soc.
2020, 41, 843.
28. G. Maroulis, C. Makris, U. Hohm, D. Goebel, J. Phys. Chem.
A 1997, 101, 953.
29. S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem.
Soc. 2008, 130, 10870.
30. M. T. Kapelewski, S. J. Geier, M. R. Hudson, D. Stück, J. A.
Mason, J. N. Nelson, D. J. Xiao, Z. Hulvey, E. Gilmour,
S. A. FitzGerald, M. Head-Gordon, C. M. Brown, J. R. Long,
J. Am. Chem. Soc. 2014, 136, 12119.
31. Y. S. Ho, G. McKay, Process Biochem. 1999, 34, 451.
32. J.-P. Simonin, Chem. Eng. J. 2016, 300, 254.
33. K. Murugesan, V. G. Chandrashekhar, C. Kreyenschulte, M.
Beller, R. V. Jagadeesh, Angew. Chem. Int. Ed. 2020, 59, 1.
2
. M. L. Iglesias, A. Schmidt, A. A. Ghuzlan, L. Lacroix, F. D.
Vathaire, S. Chevillard, M. Schlumberger, Arch. Endocrinol.
Metab. 2017, 61, 180.
3
4
. J. Huve, A. Ryzhikov, H. Nouali, V. Lalia, G. Augé, T. J.
Daou, RSC Adv. 2018, 8, 29248.
. B. Li, X. Dong, H. Wang, D. Ma, K. Tan, S. Jensen, B. J.
Deibert, J. Butler, J. Cure, Z. Shi, T. Thonhauser, Y. J.
Chabal, Y. Han, J. Li, Nat. Commun. 2017, 8, 485.
. K. W. Chapman, P. J. Chupas, T. M. Nenoff, J. Am. Chem.
Soc. 2010, 132, 8897.
5
6
7
8
9
. H. Wang, W. P. Lustig, J. Li, Chem. Soc. Rev. 2018,
4
7, 4729.
. N. T. Tran, D. Kim, K. S. Yoo, J. Kim, Bull. Kor. Chem. Soc.
019, 40, 112.
. J. S. Oh, K. C. Park, G. Gupta, C. Y. Lee, Bull. Kor. Chem.
Soc. 2019, 40, 128.
2
1
Bull. Korean Chem. Soc. 2021, Vol. 42, 290–293
© 2021 Korean Chemical Society, Seoul & Wiley-VCH GmbH
www.bkcs.wiley-vch.de
293