728
J. D. Spence et al. / Tetrahedron Letters 48 (2007) 725–728
tolysis of 4a and 4b at 419 nm indicate formation of
multiple photoadducts with molecular weights two,
four, and six mass units higher than the starting mate-
rial, as expected for a mixture derived from competing
cyclization and reduction pathways.
2. Enediyne Antibiotics as Antitumor Agents; Borders, D. B.,
Doyle, T. W., Eds.; Marcel Dekker: New York, 1995.
3
. (a) Grissom, J. W.; Gunawardena, G. U.; Klinberg, D.;
Huang, D. Tetrahedron 1996, 52, 6453–6518; (b) Maier,
M. E. Synlett 1995, 13–26; (c) Nicolaou, K. C.; Dai, W.
M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387–1416.
. Jones, G. B.; Russell, K. C. The Photo-Bergman Cyclo-
aromatization of Enediynes. In CRC Handbook of Photo-
chemistry and Photobiology; Horspool, W., Lenci, F., Eds.;
CRC: Boca Raton, 2004, Chapter 29.
4
In conclusion, we have developed the syntheses of por-
phyrenediynes in which the porphyrin macrocycle is
conjugated to the in-plane p-system of an arenediyne.
The presence of a porphyrinic substituent on the alkyne
induces a large thermal barrier toward cyclization and
lowers the overall efficiency of the photo-Bergman cycli-
zation, thereby allowing alternative reactions to become
competitive upon irradiation at 419 nm. In the presence
of an appropriate electron donor such as DNA, how-
ever, C1–C5 photocyclization may become the domi-
nant reaction pathway to generate a more lethal
enediyne pro-drug capable of four hydrogen atom
5. (a) Evenzahav, A.; Turro, N. J. J. Am. Chem. Soc. 1998,
120, 1835–1841; (b) Evenzahav, A.; Turro, N. J.; Nico-
laou, K. C. Tetrahedron Lett. 1994, 35, 8089–8092.
6
. (a) McMillin, D. R.; Shelton, A. H.; Bejune, S. A.;
Fanwick, P. E.; Wall, R. K. Coord. Chem. Rev. 2005, 249,
1
451–1459; (b) Osterloh, J.; Vicente, M. G. H. J. Porphy-
rins Phthalocyanines 2002, 6, 305–324.
. Aihara, H.; Jaquinod, L.; Nurco, D. J.; Smith, K. M.
Angew. Chem., Int. Ed. 2001, 40, 3439–3441.
. Nath, M.; Huffman, J. C.; Zaleski, J. M. Chem. Commun.
2003, 858–859.
7
8
2
2
abstractions. Work in this direction is currently in
progress.
9. Nath, M.; Pink, M.; Zaleski, J. M. J. Am. Chem. Soc.
005, 127, 478–479.
2
1
1
1
0. Chandra, T.; Kraft, B. J.; Huffman, J. C.; Zaleski, J. M.
Inorg. Chem. 2003, 42, 5158–5172.
1. Spence, J. D.; Cline, E. D.; LLagostera, D. M.; O’Toole,
P. S. Chem. Commun. 2004, 180–181.
2. Fouad, F. S.; Crasto, C. F.; Lin, Y.; Jones, G. B.
Tetrahedron Lett. 2004, 45, 7753–7756.
Acknowledgements
This work was funded by grants from the Research Cor-
poration, Merck AAAS Undergraduate Science Re-
search Program and the California State University
Program for Education and Research in Biotechnology
13. For a recent discussion on the roles the two p-systems play
on cycloaromatization see the following and references
cited therein: Alabugin, I. V.; Manoharan, M. J. Phys.
Chem. A 2003, 107, 3363.
(
CSUPERB).
1
4. Boyle, R. W.; Johnson, C. K.; Dolphin, D. Chem.
Commun. 1995, 527–528.
Supplementary data
1
5. John, J. A.; Tour, J. M. Tetrahedron 1997, 53, 15515–
1
5534.
Experimental conditions and spectral data for com-
pounds 4a, 4b and 9 are available in Supplementary
16. Grubbs, R. H.; Kratz, D. Chem. Ber. 1993, 126, 149–157.
17. (a) Milgrom, L. R.; Yahioglu, G. Tetrahedron Lett. 1995,
3
6, 9061–9064; (b) Anderson, H. L. Tetrahedron Lett.
1
992, 33, 1101–1104.
1
1
8. MM2 minimization performed with Spartan 2004,
Wavefunction.
9. Zeidan, T. A.; Kovalenko, S. V.; Manoharan, M.;
Alabugin, I. V. J. Org. Chem. 2006, 71, 962–975.
References and notes
20. Harriman, A.; Davila, J. Tetrahedron 1989, 45, 4737–4750.
2
1. Prall, M.; Wittkopp, A.; Schreiner, P. R. J. Phys. Chem. A
2001, 105, 9265–9274.
1
. (a) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25–31; (b)
Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94,
22. Alabugin, I. V.; Kovalenko, S. V. J. Am. Chem. Soc. 2002,
124, 9052–9053.
660–661.