E. Ullah et al. / Tetrahedron Letters 50 (2009) 5599–5601
5601
were performed under the conditions described above and, in
References and notes
order to allow direct comparison, the reactions in the Table were
terminated after 16 h and isolated yields of the biaryl adducts
are shown. The Pd-complex of ligand 3a proved to be highly effec-
tive in activating a wide range of substrates including most notably
chloroanisole (entry 5) and the more difficult 2,4-dimethoxychlo-
robenzene (entry 4), which gave a respective 60% isolated yield.
By direct comparison, the use of a Pd-DABCO-based catalyst in
1
.
(a) Handbook of Organopalladium Chemistry for Organic Synthesis; Tsuji, J., Ed.;
Wiley: New York, 2000; (b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41,
1461–1471; (c) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555–1564; (d) Kwong, F. K.;
Chan, A. S. C. Synlett 2008, 1440–1448.
2
.
.
(a) Handbook of Organopalladium Chemistry for Organic Synthesis; Tamaru, Y.,
Ed.; Wiley: New York, 2000; (b) Rouhi, A. M. Chem. Eng. News 2004, 82, 49–58.
Nakamura, H.; Iwama, H.; Yamamoto, Y. Chem. Commun. 1996, 1459–1460.
3
4. (a) Buchwald, S. L.; Surrey, D. L. Angew. Chem., Int. Ed. 2008, 47, 2–26; (b)
Barder, T. M.; Walker, S. D.; Martenille, J. R.; Buchwald, S. L. J. Am. Chem. Soc.
2005, 127, 4685–4695; (c) (a) Strieter, E. R.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2006, 45, 925–928. (d) Barder, T. M.; Buchwald, S. L. Angew. Chem., Int. Ed.
DMF, at 110 °C for 19 h provided 63% yield of the same product
from 2,4-dimethoxychlorobenzene,1
3a
while
a
solvent-free
Pd-Cy
product.
3
P catalyst system was reported to give 78% yield of this
2004, 43, 1871–1876.
1
3b
The present results therefore place the 4-hydroxyl-
5. So, C. M.; Chiu, C. C.; Lau, C. P.; Kwong, F. K. J. Org. Chem. 2008, 73, 7803–7806.
6
.
(a) Busacca, C. A.; Grossbach, D.; So, R. C.; O’Brien, E. M.; Spinelli, E. M. Org. Lett.
003, 5, 595–598; (b) Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad, N.; Lee,
substituted phorone 3a among only a handful of systems that
allow activation of these most challenging electron-rich and
ortho-substituted aryl chlorides.
That the 4-hydroxyl substituted phosphorinane 3a proved to be
the ligand of choice in this reaction is interesting given the remote
nature of this hydroxyl group from the strongly co-ordinating
phosphorus donor. It is difficult to consider an explanation other
than the hypothesis that this ligand functions as a hemilabile
P,O-bidentate ligand in accord with the models shown in Figure
2
H.; Li, Z.; Liang, M.; Reeves, D.; Saha, A.; Varsolona, R.; Senanayake, C. H. Org.
Lett. 2008, 10, 341–344.
Schulz, T.; Torborg, C.; Schaffner, B.; Huang, J.; Zapf, A.; Kadrov, R.; Borner, A.;
Beller, M. Angew. Chem., Int. Ed. 2009, 48, 918–921.
For a summary of earlier developments in the Pd-mediated Suzuki coupling of
aryl chlorides see: (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc.
7
.
.
8
1998, 120, 9722–9723; (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37,
3387–3388; (c) Bei, X.; Crevier, T.; Guram, A. S.; Jandeleit, B.; Powers, T. S.;
Turner, H. W.; Uno, T.; Weinberg, W. H. Tetrahedron Lett. 1999, 40, 3855–3858;
(d) Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S.; Petersen, J. L. J. Org.
Chem. 1999, 64, 6797–6803; (e) Wolfe, J. P.; Buchwald, S. L. Angew Chem., Int.
Ed. 1999, 38, 2413–2416; (f) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000,
3. Ligand 3a may thus be considered a member of the expanding
class of useful hemilabile-bidentate ligands collected in Figure 1.
The incorporation of a strongly co-ordinating, sterically hindered
soft phosphine donor and a second, weaker co-ordinating atom
into a bidentate ligand core may thus be a useful general feature
allowing participation of 14- and 16-electron palladium species
at various points in the catalytic cycle.
1
22, 4020–4028; (g) Schnyder, A.; Aemmer, T.; Indolese, A. F.; Pittelkow, U.;
Studer, M. Adv. Synth. Catal. 2002, 344, 495–498; (h) Yin, J.; Rainka, M. P.;
Zhang, X. X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162–1163; (i)
Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67,
5553–5566; (j) Jensen, J. F.; Johannsen, M. Org. Lett. 2003, 5, 3025–3028; (k)
Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818–
11819; (l) Zapf, A.; Jackstell, R.; Rataboul, F.; Riermeier, T.; Monsees, A.;
Fuhrmann, C.; Shaikh, N.; Dingerdissen, U.; Beller, M. Chem. Commun. 2004, 38–
39; (m) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2004, 43, 1871–1876; (n) Kwong, F. Y.; Lam, W. H.; Yeung, C. H.;
Chan, K. S.; Chan, A. S. C. Chem. Commun. 2004, 1922–1923; (o) Bei, X.;
Hagemeyer, A.; Volpe, A.; Saxton, R.; Turner, H.; Guram, A. S. J. Org. Chem. 2004,
3
. Conclusion
6
4
9, 8626–8633; (p) Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005,
4, 6173–6177; (q) Hadei, N.; Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Org.
In conclusion, a series of 4-substituted phosphorinane ligands
were prepared. The ligand P-cyclohexyl-4-hydroxy-2,2,6,6-tetram-
ethylphosphorinane 3a proved most effective in the Suzuki–Miya-
ura cross-coupling of challenging aryl chlorides disclosing an
interesting ligand substituent effect. This ligand is among a handful
that are currently available that allow activation of these sub-
strates. The use of such hemilabile ligands in cross-coupling pro-
Lett. 2005, 7, 1991–1994.
9
.
(a) McNulty, J.; Zhou, Y. Tetrahedron Lett. 2004, 45, 407–410; (b) Brenstrum, T.;
Clattenburg, J.; Britten, J.; Zavorine, S.; Dyck, A. J.; McNulty, J.; Capretta, A. Org.
Lett. 2006, 8, 103–105.
10. Welcher, R. P.; Castellion, M. E.; Wystrach, V. P. J. Am. Chem. Soc. 1959, 81,
2541–2547; Welcher, R. P.; Day, N. E. J. Org. Chem. 1962, 27, 1824–1827.
1. Pastor, S. D.; Odorisio, P. A.; Spivack, J. D. J. Org. Chem. 1984, 49, 2906–2909.
2. General procedure for reactions reported in Table 1. Into an oven dried Schlenk
flask equipped with a magnetic stirring stir bar were added under argon the
1
1
cesses appears to be
a general structural feature, we are
currently exploring other structural types that incorporate this fea-
ture. Ligand 3a is easily prepared in two steps from commercial
aryl halide (0.20 g, 1.30 mmol), boronic acid (0.31 g, 2.58 mmol), Pd(OAc)
2
(
0.003 g, 0.013 mmol), ligand (0.009 g, 0.039 mmol), and Cs
2
CO (1.27 g,
3
3.9 mmol, Aldrich, ReagentPlus, 99%). The flask was capped, evacuated, and
materials. Further modification of ligand 3a, including immobiliza-
flushed with argon three times. Toluene (10.0 ml) was introduced and the
reaction mixture was immersed in a pre-heated oil bath at the indicated
temperature until the reaction was complete (Table 1, 16 h at 110 °C). The
reaction mixture was then diluted with ethyl acetate, filtered through silica
and the solvent was removed at reduced pressure. The crude product was then
purified by column chromatography on silica gel. The physical and spectral
data of all biphenyl compounds were identical to those previously described.
3. (a) Li, J. H.; Zhu, Q. M.; Xie, Y. X. Tetrahedron 2006, 62, 10888–10895; (b) Li, J.
H.; Deng, C. L.; Xie, Y. X. Synth. Commun. 2007, 37, 2433–2448.
tion onto a solid support1
4,15
and its application to other cross-cou-
pling processes is under investigation.
Acknowledgments
1
1
We thank NSERC, Cytec Canada Inc. and McMaster University
for financial support of this work.
4. Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217–3274.
15. Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. Rev. 2003, 103, 3401–3430.