ChemComm
Communication
respectively, at 273 K. The selectivity of PCTF-1 or PCTF-2 does not
depend only on the size of the gas components (kinetic diameter:
CO 3.3 Å, N 3.6 Å and CH 3.8 Å) but also on the polarizability of
2
2
4
the surface and of the gas components. Recently, Cooper et al.
calculated CO :N selectivities for various CTFs between 16 and 31
2
2
13
at 273 K using the Ideal Adsorbed Solution Theory (IAST).
In summary, tetranitrile tetra(4-cyanophenyl)ethylene not
only gives a porous supramolecular network but also yields a
porous CTF with a high surface area already at 400 1C under
2
ionothermal conditions. PCTF-1 shows the highest H uptake
capacity (1.86 wt%) for a CTF material. Such a tetranitrile
provides a novel strategy for the development of functional
CTF materials with a high surface area and gas storage capacity.
Fig. 4 NL-DFT pore size distribution curve of PCTF-1 and PCTF-2.
Notes and references
ꢀ
1
§
Crystal data for 1: C30
16 4 1
H N , M = 432.47 g mol , tetragonal, I4 /acd,
3
a = 22.0767(8) Å, c = 21.1707(10) Å, V = 10318.2(7) Å , Z = 16, m(Cu-Ka) =
ꢀ1
0
.543 mm , T = 173(2) K, 10 909 reflections measured, 753 indepen-
dent (Rint = 0.0295), final R 0.0592 (I > 2s(I)), wR = 0.1693 (all data),
goodness of fit on F = 1.105. CCDC 924716.
1
2
2
1
S.-Y. Ding and W. Wang, Chem. Soc. Rev., 2013, 42, 548–568; Y. Jin, Y. Zhu
and W. Zhang, CrystEngComm, 2013, 15, 1484–1499; Z. Xiang and D. Cao,
J. Mater. Chem. A, 2013, 1, 2691–2718; N. B. McKeown and P. M. Budd,
Macromolecules, 2010, 43, 5163–5176; R. Dawson, A. I. Cooper and D. J.
Adams, Prog. Polym. Sci., 2012, 37, 530–563; J. Germain, J. M. J. Fr ´e chet and
F. Svec, Small, 2009, 5, 1098–1111; P. Kaur, J. T. Hupp and S. T. Nguyen, ACS
Catal., 2011, 1, 819–835; U. H. F. Bunz, Chem. Rev., 2000, 100, 1605–1644.
M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511–1517.
J. Germain, J. Hradil, J. M. J. Fr ´e chet and F. Svec, Chem. Mater., 2006,
18, 4430–4435.
2
3
Fig. 5
2
H sorption isotherms for PCTF-1 and PCTF-2 at 77 K.
4
5
6
7
B. S. Ghanem, K. J. Msayib, N. B. McKeown, K. D. M. Harris, Z. Pan,
P. M. Budd, A. Butler, J. Selbie, D. Book and A. Walton, Chem.
Commun., 2007, 67–69.
T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu,
F. Deng, J. M. Simmons, S. Qiu and G. Zhu, Angew. Chem., Int. Ed.,
2009, 48, 9457–9460.
J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu,
C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and
A. I. Cooper, Angew. Chem., Int. Ed., 2007, 46, 8574–8578.
(a) S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine and
R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524–19527; (b) A. I.
Cooper, CrystEngComm, 2013, 15, 1483; (c) K. S. W. Sing, D. H. Everett,
R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska,
Pure Appl. Chem., 1985, 57, 603–619.
Table 2
2 2 4
H , CO and CH uptakes of PCTF-1 and PCTF-2 at 1 bar
a
b
c
b
c
H
2
CO
2
CO
2
CH
4
CH
4
3
3
ꢀ1
3
ꢀ1
3
ꢀ1
ꢀ1
Comp
(wt%)
(cm g
)
(cm g
)
(cm g
)
(cm g )
PCTF-1
PCTF-2
1.86
0.9
73.0
41.5
44.9
24.2
23.6
15.1
15.2
8.0
a
b
c
H
2
uptake at 77 K. Gas uptake at 273 K. Gas uptake at 293 K.
0
8
4
,4 -biphenyldicarbonitrile adsorbs 1.55 wt% H
2
at 1 bar, 77 K.
uptake capa-
Microwave-obtained ionothermal CTFs showed H
cities ranging from 0.7 to 1.78 wt% at 1 bar and 77 K. At the
same time, PCTF-2 adsorbed 0.9 wt% H at 77 K and 1 bar. The
CO and CH
two different temperatures at 1 bar (Table 2, Fig. S14–S17 in ESI‡).
2
8 P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem., Int. Ed., 2008,
47, 3450–3453.
9
1
1
P. Kuhn, A. l. Forget, D. Su, A. Thomas and M. Antonietti, J. Am.
Chem. Soc., 2008, 130, 13333–13337.
2
2
4
uptake capacities of the PCTFs were measured at 10 P. Kuhn, A. Thomas and M. Antonietti, Macromolecules, 2009, 42, 319–326.
11 W. Zhang, C. Li, Y.-P. Yuan, L.-G. Qiu, A.-J. Xie, Y.-H. Shen and
J.-F. Zhu, J. Mater. Chem., 2010, 20, 6413–6415.
3
ꢀ1
The volume of CO adsorbed on PCTF-1 at 273 K with 73 cm g
lies towards the upper end when compared to other CTFs which
2
12 Several attempts to synthesize CTFs under microwave irradiation at
high temperature were unsuccessful in our hands and led only to
damages of the microwave as well as the crucible in the solid-state
reaction. Under these reaction conditions we also observed only low
yield of the product from 1,4-dicyanobenzene.
3
ꢀ1
13
showed CO
volume of CH
Noteworthily, for CTFs no CH
yet. In line with the smaller surface area and pore volume the gas
uptake capacity of PCTF-2 is roughly half that of PCTF-1.
2
uptakes of 20–93 cm g at 273 K and 1 bar. The
3
ꢀ1
4
adsorbed on PCTF-1 is 23.6 cm g at 273 K.
4
sorption data have been recorded 13 S. Ren, M. J. Bojdys, R. Dawson, A. Laybourn, Y. Z. Khimyak,
D. J. Adams and A. I. Cooper, Adv. Mater., 2012, 24, 2357–2361.
14 I. B. Johns, E. A. McElhill and J. O. Smith, Ind. Eng. Chem. Prod. Res.
Dev., 1962, 1, 277–281.
Moreover, the CO uptake capacity is higher than the CH uptake 15 Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble and
2
4
W. Zhang, Chem. Sci., 2012, 3, 874–877.
6 R. Dawson, A. Laybourn, R. Clowes, Y. Z. Khimyak, D. J. Adams and
A. I. Cooper, Macromolecules, 2009, 42, 8809–8816.
17 V. Abetz, T. Brinkmann, M. Dijkstra, K. Ebert, D. Fritsch, K. Ohlrogge,
D. Paul, K. V. Peinemann, S. Pereira-Nunes, N. Scharnagl and M. Schossig,
AIChE J., 2006, 8, 328–358.
8 Y.-S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, J. T. Hupp and
R. Q. Snurr, Chem. Commun., 2008, 4135–4137.
capacity at 273 K and 293 K at 1 bar, indicating the selectivity of CO2
sorption over CH sorption. The ratio of the initial slopes in the
Henry region of the adsorption isotherms (Fig. S20–S24 in ESI‡)
determines the selectivities exhibited by PCTF-1 and PCTF-2 for
adsorption of CO over N and for CO over CH . PCTF-1 shows
selectivity ratios of 13 : 1 and 5 : 1 for CO :N and CO :CH
1
4
1
7,18
2
2
2
4
1
2
2
2
4
,
This journal is c The Royal Society of Chemistry 2013
Chem. Commun.