G. Asensio et al.
FULL PAPER
68, 7806–7810; f) L. D’Accolti, P. Kang, S. Khan, R. Curci,
C. S. Foote, Tetrahedron Lett. 2002, 43, 4649–4652; g) D. Yang,
M. K. Wong, X. C. Wang, Y. C. Tang, J. Am. Chem. Soc. 1998,
120, 6611; h) C. Fusco, M. Fiorentino, A. Dinoi, R. Curci, J.
Org. Chem. 1996, 61, 8681; i) R. Curci, A. Detomaso, M. E.
Lattanzio, G. B. Carpenter, J. Am. Chem. Soc. 1996, 118,
11089; j) G. Asensio, R. Mello, M. E. González-Núñez, G.
Castellano, J. Corral, Angew. Chem. Int. Ed. Engl. 1996, 35,
217–218; k) G. Asensio, G. Castellano, R. Mello, M. E.
González-Núñez, J. Org. Chem. 1996, 61, 5564–5566; l) D.
Kuck, A. Schuster, C. Fusco, M. Fiorentino, R. Curci, J. Am.
Chem. Soc. 1994, 116, 2375; m) G. Asensio, M. González-
Núñez, R. Mello, C. Boix-Bernardini, W. Adam, J. Am. Chem.
Soc. 1993, 115, 7250; n) R. Mello, M. Fiorentino, C. Fusco, R.
Curci, J. Am. Chem. Soc. 1989, 111, 6749–6757.
Chem. Res. 1971, 4, 57–64; j) G. Klopman, J. Am. Chem. Soc.
1968, 90, 223–234; k) L. Salem, J. Am. Chem. Soc. 1968, 90,
543–552; l) L. Salem, J. Am. Chem. Soc. 1968, 90, 553–566.
[14]
a) C. G. Derick, J. Am. Chem. Soc. 1911, 33, 1152–1162; b)
J. G. Kirkwood, F. H. Westheimer, J. Chem. Phys. 1938, 6, 506–
512; c) J. G. Kirkwood, F. H. Westheimer, J. Chem. Phys. 1938,
6, 513–517; d) R. D. Topsom, Acc. Chem. Res. 1983, 16, 292–
298; e) W. F. Reynolds, Prog. Phys. Org. Chem. 1983, 14, 165–
203; f) R. W. Taft, R. D. Topsom, Prog. Phys. Org. Chem. 1987,
16, 1–83; g) G. Bianchi, O. W. Howarth, C. J. Samuel, G. Vla-
hov, J. Chem. Soc. Chem. Commun. 1994, 627–628; h) K.
Bowden, E. J. Grubbs, Chem. Soc. Rev. 1996, 25, 171–182; i) O.
Exner, J. Phys. Org. Chem. 1999, 12, 265–274; j) M. Charton, J.
Phys. Org. Chem. 1999, 12, 275–282; k) R. Ponec, X. Girones,
R. Carbó-Dorca, J. Chem. Inf. Comput. Sci. 2002, 42, 564–570.
[5] a) M. E. González-Núñez, J. Royo, G. Castellano, C. Andreu,
C. Boix, R. Mello, G. Asensio, Org. Lett. 2000, 2, 831–834; b)
M. E. González-Núñez, G. Castellano, C. Andreu, J. Royo, M.
Báguena, R. Mello, G. Asensio, J. Am. Chem. Soc. 2001, 123,
7487–7491; c) M. E. González-Núñez, J. Royo, R. Mello, M.
Báguena, J. M. Ferrer, C. R. deArellano, G. Asensio, G. K. S.
Prakash, J. Org. Chem. 2005, 70, 7919–7924.
[6] a) N. T. Ahn, O. Eisenstein, Tetrahedron Lett. 1976, 17, 155–
158; b) N. T. Ahn, O. Eisenstein, New J. Chem. 1977, 61–70; c)
A. S. Cieplak, J. Am. Chem. Soc. 1981, 102, 4540–4552; d) A. S.
Cieplak, B. D. Tait, C. R. Johnson, J. Am. Chem. Soc. 1989,
111, 8447–8462.
[7] W. Adam, R. Curci, M. E. González-Núñez, R. Mello, J. Am.
Chem. Soc. 1991, 113, 7654–7658.
[8] M. Charton, Prog. Phys. Org. Chem. 1981, 13, 119–251.
[9] a) J. Shorter, Pure Appl. Chem. 1994, 66, 2451–2468; b) J.
Shorter, Pure Appl. Chem. 1997, 69, 2497–2510.
[15]
[16]
a) Y. Xiong, C.-G. Zhan, J. Org. Chem. 2004, 69, 8451–8458;
b) M. M. Toteva, J. P. Richard, J. Am. Chem. Soc. 2000, 122,
11073–11083; c) P. Pérez, A. Toro-Labbé, R. Contreras, J. Phys.
Chem. A 2000, 104, 11993–11998; d) W. Adcock, N. A. Trout,
Chem. Rev. 1999, 99, 1415–1435; e) P. Wipf, J.-K. Jung, Chem.
Rev. 1999, 99, 1469–1480; f) B. Galabov, P. Bobadova-Parv-
anova, J. Phys. Chem. A 1999, 103, 6793–6799.
a) I. V. Alabugin, M. Manoharan, J. Org. Chem. 2004, 69,
9011–9024; b) I. V. Alabugin, T. A. Zeidan, J. Am. Chem. Soc.
2002, 124, 3175–3185; c) I. V. Alabugin, J. Org. Chem. 2000,
65, 3910–3919.
[17]
[18]
a) M. Cherest, H. Felkin, N. Prudent, Tetrahedron Lett. 1968,
9, 2199–2204; b) M. Cherest, H. Felkin, Tetrahedron Lett. 1968,
9, 2205–2208; c) M. Cherest, Tetrahedron 1980, 36, 1593–1598.
Dual effects of substituents originating from their inductive
and their resonance contributions – such as, for instance, on
reaction rate and orientation in aromatic electrophilic substitu-
[10] a) W. Adam, G. Asensio, R. Curci, M. E. González-Núñez, R.
Mello, J. Org. Chem. 1992, 57, 953–955; b) R. Vanni, S. J. Gar-
den, J. T. Banks, K. U. Ingold, Tetrahedron Lett. 1995, 36,
7999–8002; c) G. Asensio, R. Mello, M. E. González-Núñez,
C. Boix, J. Royo, Tetrahedron Lett. 1997, 38, 2373–2376; d)
P. A. Simakov, S. Y. Choi, M. Newcomb, Tetrahedron Lett.
1
tion, or on acidity and H NMR chemical shifts of α-C–H σ-
bonds – are well known in organic chemistry.
O. Exner, in Correlation Analysis in Chemistry (Eds.: N. B.
Chapman, J. Shorter), Plenum Press, New York, 1978, Chapter
10.
[19]
1998, 39, 8187–8190; e) R. Curci, L. DЈAccolti, C. Fusco, Tet- [20]
C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165–195.
rahedron Lett. 2001, 42, 7087–7090; f) W. Adam, R. Mello, R.
Curci, Angew. Chem. Int. Ed. Engl. 1990, 29, 890–891.
[21]
a) I. Fernández, G. Frenking, J. Org. Chem. 2006, 71, 2251–
2256; b) J. B. Barbour, J. M. Karty, J. Phys. Org. Chem. 2005,
18, 210–216; c) Y. Simón-Manso, J. Phys. Chem. A 2005, 109,
2006–2011; d) B. Galabov, D. Cheshmedzhieva, S. Ilieva, B.
Hadjieva, J. Phys. Chem. A 2004, 108, 11457–11462; e) B. G.
Janesko, C. J. Gallek, D. Yaron, J. Phys. Chem. A 2003, 107,
1655–1663; f) O. Exner, S. Böhm, Chem. Eur. J. 2002, 8, 5147–
5152; g) K. B. Wiberg, J. Org. Chem. 2002, 67, 1613–1617; h)
O. Exner, S. Böhm, Chem. Eur. J. 2002, 8, 5147–5152; i) O.
Exner, S. Böhm, J. Org. Chem. 2002, 67, 6320–6327; j) O. Ex-
ner, M. Ingr, P. Cársky, J. Mol. Struct. (THEOCHEM) 1997,
397, 231–238; k) S. Marriot, R. D. Topsom, J. Am. Chem. Soc.
1984, 106, 7–10.
[11] a) A. Bravo, G. Fontana, G. Fronza, F. Minisci, J. Chem. Soc.
Chem. Commun. 1995, 1573–1574; b) A. Bravo, G. Fontana, F.
Minisci, Tetrahedron Lett. 1995, 38, 1895–1898; c) F. Minisci,
L. Zhao, F. Fontana, A. Bravo, Tetrahedron Lett. 1995, 36,
1697–1700; d) A. Bravo, F. Fontana, G. Fronza, F. Minisci, L.
Zhao, J. Org. Chem. 1998, 63, 254–263.
[12] a) M. Freccero, R. Gandolfi, M. Sarzi-Amadè, A. Rastelli, J.
Org. Chem. 2003, 68, 811–823; b) G. V. Shustov, A. Rauk, J.
Org. Chem. 1998, 63, 5413–5422; c) X. Du, K. N. Houk, J. Org.
Chem. 1998, 63, 6480–6483; d) M. N. Glukhovtsev, C. Canepa,
R. D. Bach, J. Am. Chem. Soc. 1998, 120, 10528–10533; e)
R. D. Bach, J. L. Andrés, M. D. Su, J. W. McDouall, J. Am.
Chem. Soc. 1993, 115, 5768–5775.
[22]
a) M. Schlosser, Angew. Chem. Int. Ed. Engl. 1998, 110, 1496–
1513; b) F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456–463; c)
R. W. Taft, F. G. Bordwell, Acc. Chem. Res. 1988, 21, 463–469.
[13] a) A. Rauk, Orbital Interaction Theory of Organic Chemistry,
John Wiley & Sons, New York, 1994; b) T. A. Albright, J. K.
Burdett, M. H. Whangboo, Orbital Interactions in Chemistry,
John Wiley & Sons, New York, 1985; c) K. Fukui, Science
1982, 218, 747–754; d) O. Henri-Rousseau, F. Texier, J. Chem.
Educ. 1978, 55, 437–441; e) N. D. Epiotis, W. R. Cherry, S.
Shaik, R. L. Yates, F. Bernardi, Top. Curr. Chem. 1977, 70, 1–
242; f) I. Fleming, Frontier Orbitals and Organic Chemical Re-
actions, Wiley, New York, 1976; g) K. Fukui, Theory of Orien-
tation and Stereoselection, Springer-Verlag, Berlin, 1975; h) R.
Hoffmann, Acc. Chem. Res. 1971, 4, 1–9; i) K. Fukui, Acc.
[23]
[24]
D. D. Perrin, W. L. F. Armarego, Purification of Laboratory
Chemicals, 3rd ed., Pergamon, New York, 1988.
J. K. Crandall, in Encyclopedia of Reagents for Organic Synthe-
sis (Ed.: L. A. Paquette), John Wiley & Sons, New York, 1995,
vol. 3, pp. 3622–3624.
W. Adam, G. Asensio, R. Curci, M. E. González-Núñez, R.
Mello, J. Am. Chem. Soc. 1992, 114, 8345–8349.
Received: August 20, 2007
[25]
Published Online: November 21, 2007
466
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 455–466