Job/Unit: O42170
/KAP1
Date: 10-04-14 18:50:31
Pages: 5
J. Hullaert, D. R. Laplace, J. M. Winne
SHORT COMMUNICATION
J. W. Lim, C. H. Yoon, Y. Sung, Y. K. Kim, J. Am. Chem. Soc.
1997, 119, 8391–8392; g) S. P. Andrews, M. Ball, F. Wierschem,
E. Cleator, S. Oliver, K. Högenauer, O. Simic, A. Antonello,
U. Hünger, M. D. Smith, S. V. Ley, Chem. Eur. J. 2007, 13,
5688–5712; h) S. Kalidindi, W. B. Jeong, A. Schall, R. Band-
ichhor, B. Nosse, O. Reiser, Angew. Chem. Int. Ed. 2007, 46,
6361–6363; Angew. Chem. 2007, 119, 6478–6481; i) S. Carret,
J.-P. Deprés, Angew. Chem. Int. Ed. 2007, 46, 6870–6873; An-
gew. Chem. 2007, 119, 6994–6997; j) I. Reboul, T. Boddaert, Y.
Coquerel, J. Rodriguez, Eur. J. Org. Chem. 2008, 5379–5382; k)
H. Yang, X. Qiao, F. Li, H. Ma, L. Xie, X. Xug, Tetrahedron
Lett. 2009, 50, 1110–1112; l) T. S.-L. Banchelin, S. Carret, A.
Giannini, J.-P. Deprés, Eur. J. Org. Chem. 2009, 22, 3678–3682;
m) G. Valot, J. Garcia, V. Duplan, C. Serba, S. Barluenga, N.
Winssinger, Angew. Chem. Int. Ed. 2012, 51, 5391–5394; Angew.
Chem. 2012, 124, 5487–5490; n) D. Xia, Y. Du, Z. Yi, H. Song,
Y. Qin, Chem. Eur. J. 2013, 19, 4423–4427.
The aqueous layer was further extracted with chloroform (3ϫ
10 mL), and the combined organic layer was dried with anhydrous
sodium sulfate and concentrated under reduced pressure. The resi-
due (114 mg, 96%) was purified by flash chromatography over sil-
ica gel (0.5 to 1% ethyl acetate in hexane). This gave tricyclic com-
pound 7 (66 mg, 56%), which was isolated as a single diastereomer,
next to a faster-eluting fraction (20 mg, 17%) containing only the
minor diastereomer of 7 and monocyclic dienes 8. Furthermore,
a small unseparated fraction was obtained that consisted of both
diastereomers of 7 and 8 (10 mg, 8%). If either diastereomer of 4
was used as the starting material, exactly the same reaction mixture
1
was obtained (with superimposable H NMR spectra of the crude
material), and similar amounts of 7 were isolated by flash
chromatography (typical range of 47–56% obtained from one sepa-
ration on 100–150 mg scales).
[5] a) A. Ghantous, H. Gali-Muhtasib, H. Vuorela, N. A. Saliba,
N. Darwiche, Drug Discovery Today 2010, 15, 668–678; b) L.
Sun, F. Shah, M. A. Helal, Y. Wu, Y. Pedduri, A. G. Chitti-
boyina, J. Gut, P. J. Rosenthal, M. A. Avery, J. Med. Chem.
2010, 53, 7864–7868; c) Q. Zhang, Y. Lu, Y. Ding, J. Zhai, Q.
Ji, W. Ma, M. Yang, H. Fan, J. Long, Z. Tong, Y. Shi, Y. Jia,
B. Han, W. Zhang, C. Qiu, X. Ma, Q. Li, Q. Shi, H. Zhang,
D. Li, J. Zhang, J. Lin, L.-Y. Li, Y. Gao, Y. Chen, J. Med.
Chem. 2012, 55, 8757–8769.
Iso-6,12-furanoguaiane 7 (isolated major diastereomer): Rf (5% ethyl
acetate in hexane) = 0.22. IR ν = 2949, 1733 (vs), 1578 (w) cm–1.
˜
1H NMR (500 MHz, CDCl3, 21 °C): δ = 5.73 (ddq, J = 8.2, 3.5,
1.7 Hz, 1 H, C9-H), 5.67 (br. s, 1 H, C11-H), 3.76 (s, 3 H,
CO2CH3), 3.21 (br. d, J = 17.5 Hz, 1 H, C8-HH), 3.11 (ddd, J =
12.2, 9.4, 2.5 Hz, 1 H, C5-H), 2.89–2.81 (band, 2 H, C1-H and C4-
H), 2.79 (dd, J = 17.5, 8.4 Hz, 1 H, C8-HH), 2.16 (s, 3 H, C12-
CH3), 2.08–1.90 (band, 4 H, C2-H2 and C3-H2), 1.77 ppm (s, 3 H,
C14-H3) (assignments were made on the basis of the guaiane ter-
pene numbering system). 13C NMR (125 MHz, CDCl3, 21 °C): δ =
176.8 (C), 150.2 (C), 148.8 (C), 138.7 (C), 124.5 (CH), 116.9 (C),
107.7 (CH), 51.8 (CH3), 47.7 (CH), 46.2 (CH), 45.5 (CH), 28.5
(CH2), 28.0 (CH2), 23.7 (CH2), 20.6 (CH3), 13.3 ppm (CH3).
[6] K. P. Kaliappan, R. S. Nandurdikar, Org. Biomol. Chem. 2005,
3, 3613–3614.
[7] M. Harmata, Tetrahedron 1997, 53, 6235–6280.
[8] a) R. Noyori, M. Nishizawa, F. Shimizu, Y. Hayakawa, K. Ma-
ruoka, S. Hashimoto, H. Yamamoto, H. Nozaki, J. Am. Chem.
Soc. 1979, 101, 220–222; b) B. Föhlisch, R. Herter, Chem. Ber.
1984, 117, 2580–2596; c) R. J. Giguere, S. M. Duncan, J. M.
Bean, L. Purvis, Tetrahedron Lett. 1988, 29, 6071–000; d) R. J.
Giguere, S. M. Tassely, M. I. Rose, Tetrahedron Lett. 1990, 31,
4577–4580; e) M. Harmata, B. F. Herron, J. Org. Chem. 1993,
58, 7393–7396; f) P. Mauléon, R. M. Zeldin, A. Z. González,
F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348–6349.
[9] a) M. Harmata, K. W. Carter, Tetrahedron Lett. 1997, 38,
7985–7988; b) G. Kreiselmeier, B. Föhlisch, Tetrahedron Lett.
2000, 41, 1375–1379.
+
HRMS (ESI): calcd. for C16H21O3 [M + H]+ 261.14852; found
261.1491.
Supporting Information (see footnote on the first page of this arti-
cle): Additional mechanistic rationale for the cycloaddition reac-
tions, general experimental details, and experimental procedures
and characterization data for compounds 1–14, including copies of
1
the H NMR and 13C NMR spectra.
[10] a) M. Harmata, Chem. Commun. 2010, 46, 8886–8903; b) M.
Harmata, Chem. Commun. 2010, 46, 8904–8922.
[11] For a few notable recent examples, see: a) J. Wang, S.-G. Chen,
B.-F. Sun, G.-Q. Lin, Y.-J. Shang, Chem. Eur. J. 2013, 19, 2539–
2547; b) L. L. Liu, P. Chiu, Chem. Commun. 2011, 47, 3416–
3417; c) M. G. Nilson, R. L. Funk, J. Am. Chem. Soc. 2011,
133, 12451–12453.
Acknowledgments
J. M. W. acknowledges the Fonds voor Wetenschappelijk Onder-
zoek – Vlaanderen (FWO) for providing research funds (“Krediet
aan Navorsers”) for this project.
[12] a) G. Pattenden, J. M. Winne, Tetrahedron Lett. 2009, 50, 7310–
7313; b) M. J. Palframan, G. Pattenden, Tetrahedron Lett.
2013, 54, 324–328.
[13] J. M. Winne, S. Catak, M. Waroquier, V. Van Speybroeck, An-
gew. Chem. Int. Ed. 2011, 50, 11990–11993; Angew. Chem.
2011, 123, 12196–12199.
[14] a) D. R. Laplace, B. Verbraeken, K. Van Hecke, J. M. Winne,
Chem. Eur. J. 2014, 20, 253–262; b) J. Zhang, L. Q. Li, Y. X.
Wang, W. J. Wang, J. J. Xue, Y. Li, Org. Lett. 2012, 14, 4528–
4530.
[1] N. H. Fischer, E. J. Olivier, H. D. Fischer, Fortschr. Chem. Org.
Naturst. 1979, 38, 47–390.
[2] H. T. Simonson, C. Weitzel, S. B. Christensen, Natural Prod-
ucts (Eds.: K. G. Ramawat, J. M. Mérillon), Springer, Berlin,
2013, p. 3069–3098.
[3] S. Wetzel, R. S. Bon, K. Kumar, H. Waldmann, Angew. Chem.
Int. Ed. 2011, 50, 10800–10826; Angew. Chem. 2011, 123,
10990–11018.
[4] a) G. H. Posner, K. A. Babiak, G. L. Loomis, J. W. Frazee,
R. D. Mittal, I. L. Karle, J. Am. Chem. Soc. 1980, 102, 7498–
7505; b) M. Ando, H. Yamaoka, K. Takase, Chem. Lett. 1982,
4, 501–504; c) M. Demuynck, A. A. Devreese, P. J. De Clercq,
M. Vandewalle, Tetrahedron Lett. 1982, 23, 2501–2504; d)
A. A. Devreese, M. Demuynck, P. J. De Clercq, M. Vandewalle,
Tetrahedron 1983, 39, 3049–3054; e) J. H. Rigby, C. Sen-
anayake, J. Am. Chem. Soc. 1987, 109, 3147–3149; f) E. Lee,
[15] X. Han, H. Li, R. P. Hughes, J. Wu, Angew. Chem. Int. Ed.
2012, 51, 10390–10393; Angew. Chem. 2012, 124, 10536.
[16] M. J. Palframan, G. Pattenden, Synlett 2013; 24, 2720–2722.
[17] M. Harmata, G. Bohnert, C. L. Barnes, Tetrahedron Lett. 2001,
42, 149–151.
[18] C. Serba, N. Winssinger, Eur. J. Org. Chem. 2013, 4195–4214.
Received: February 28, 2014
Published Online:
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0